[科技] 求数列的前k次方和

mac2022-06-30  127

[科技] 求数列的前k次方和

到现在才会的一个科技,写一篇博客来记录一下。

简单来说,就是对于\(0 \leq t \leq k\)\(\sum_{i = 1} ^ n a_i^t\)\(n, k \leq 10^5\)

我们考虑答案序列的生成函数:\[F(x) = \sum_{t = 0} ^ {\infty} x^t \sum_{i = 1} ^ n a_i ^ t = \sum_{i = 0} ^ {n}\sum_{t = 0} ^ {\infty} (a_ix) ^ t = \sum_{i = 1} ^ n \frac{1}{1 - a_ix}\]

发现这样还是无法下手,但是考虑到\[(\ln(1 - a_ix))' = \ln'(1 - a_ix) \times a_i = \frac{-a_i}{1 - a_ix} = -\sum_{t = 0} ^ {\infty}(a_ix) ^ t a_i\]

我们记\[G(x) = \sum_{i = 1} ^ n (\ln(1 - a_ix))' = \sum_{i = 1} ^ n \frac{-a_i}{1 - a_ix} = -\sum_{i = 1} ^ {n} \sum_{t = 0} ^ {\infty}(a_ix) ^ t a_i = -\sum_{t = 0} ^ {\infty}x ^ t\sum_{i = 1} ^ n a_i ^ {t + 1}\]

那么\(F(x) = -xG(x) + n\),于是我们求出了\(G(x)\),就可以快速求出\(F(x)\)了。 考虑继续化简\(G(x)\)\[G(x) = (\sum_{i = 1} ^ n \ln(1 - a_ix))' = \ln'(\prod_{i = 1} ^ n (1 - a_ix))'\]

里面的那个分治\(FFT\)一下就行了,然后求\(Ln\),求导就可以得到\(G\)了。

不过不知道是不是自己的写法有问题,发现这样只能求到前\(n\)项的幂和,必须在\(a\)后面补零才行……

#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 50; const int Md = 998244353; typedef long long ll; typedef vector<int> Vec; inline int Add(const int &x, const int &y) { return (x + y >= Md) ? (x + y - Md) : (x + y); } inline int Sub(const int &x, const int &y) { return (x - y < 0) ? (x - y + Md) : (x - y); } inline int Mul(const int &x, const int &y) { return (ll)x * y % Md; } int Powe(int x, int y) { int ans = 1; while(y) { if(y & 1) ans = Mul(ans, x); x = Mul(x, x); y >>= 1; } return ans; } int n, k; int a[N]; namespace Poly { int rev[N << 2 | 1], inv[N << 2 | 1]; void Init() { inv[0] = inv[1] = 1; for(int i = 2; i < N; i++) { inv[i] = Mul(Md - Md / i, inv[Md % i]); } } void DFT(Vec &A, int len) { for(int i = 0; i < len; i++) if(i < rev[i]) swap(A[i], A[rev[i]]); for(int i = 1; i < len; i <<= 1) { int wn = Powe(3, (Md - 1) / (i << 1)); for(int j = 0; j < len; j += i << 1) { int nw = 1, x, y; for(int k = 0; k < i; k++, nw = Mul(nw, wn)) { x = A[j + k], y = Mul(nw, A[i + j + k]); A[j + k] = Add(x, y); A[i + j + k] = Sub(x, y); } } } } void IDFT(Vec &A, int len) { reverse(A.begin() + 1, A.end()); int IV = Powe(len, Md - 2); DFT(A, len); for(int i = 0; i < len; i++) A[i] = Mul(A[i], IV); } Vec MUL(Vec A, Vec B) { int n = A.size(), m = B.size(), len; for(len = 1; len < n + m - 1; len <<= 1); for(int i = 0; i < len; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? len >> 1 : 0); A.resize(len); B.resize(len); DFT(A, len); DFT(B, len); for(int i = 0; i < len; i++) A[i] = Mul(A[i], B[i]); IDFT(A, len); A.resize(n + m - 1); return A; } Vec GetInv(Vec A, int len) { Vec B(1, Powe(A[0], Md - 2)), C; for(int i = 2; (i >> 1) < len; i <<= 1) { for(int j = 0; j < (i << 1); j++) rev[j] = (rev[j >> 1] >> 1) | ((j & 1) ? i : 0); C = A; C.resize(i); C.resize(i << 1); DFT(C, i << 1); B.resize(i << 1); DFT(B, i << 1); for(int j = 0; j < (i << 1); j++) B[j] = Mul(B[j], Sub(2, Mul(B[j], C[j]))); IDFT(B, i << 1); B.resize(i); } B.resize(len); return B; } Vec Dir(Vec A) { Vec B; int len = A.size(); B.resize(len); for(int i = 1; i < len; i++) B[i - 1] = Mul(i, A[i]); B[len - 1] = 0; return B; } Vec Inter(Vec A) { Vec B; int len = A.size(); B.resize(len); for(int i = 1; i < len; i++) B[i] = Mul(A[i - 1], inv[i]); B[0] = 0; return B; } Vec Ln(Vec A, int len) { A = Inter(MUL(Dir(A), GetInv(A, len))); A.resize(len); return A; } } Vec Solve(int l, int r) { if(l == r) { if(l <= n) { Vec A(2); A[0] = 1; A[1] = Md - a[l]; return A; } else { Vec A(2); A[0] = 1; A[1] = 0; return A; } } int mid = (l + r) >> 1; Vec tmp1 = Solve(l, mid), tmp2 = Solve(mid + 1, r); tmp1 = Poly::MUL(tmp1, tmp2); return tmp1; } int main() { Poly::Init(); scanf("%d%d", &n, &k); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); Vec A = Solve(1, k); A = Poly::Ln(A, A.size()); A = Poly::Dir(A); for(int i = 0; i < A.size(); i++) A[i] = (Md - A[i]) % Md; A.resize(A.size() + 1); for(int i = A.size(); i; i--) A[i] = A[i - 1]; A[0] = 0; A[0] = Add(A[0], n); return 0; }

转载于:https://www.cnblogs.com/Apocrypha/p/10619032.html

最新回复(0)