CTSC2018 暴力写挂

mac2022-06-30  141

CTSC2018 暴力写挂

题意:

题目传送门

题解:

emm……第一次写边分治…… 考虑到第二棵树上的\(Lca\)我们难以处理,于是我们可以考虑枚举第二棵树上的\(Lca\),然后在第一棵树上最大化\(dep_u + dep_v - dep_{lca}\)。但是在这个式子中,又受到了第一棵树上\(Lca\)的限制,于是我们考虑化简式子。稍微化简一下会发现式子变成了\(\frac{1}{2} * (dep_u + dep_v + dis_{u, v})\),然后我们就可以将其转化成无根树来做了。 考虑边分的时候我们应该维护什么东西,我们将\(dis_{u, v}\)拆成\(dis_{u, rt} + dis_{rt, v}\),其中\(rt\)为当前边分中心的两个点其中的一个点。那么我们就只需要维护\(dis_{x, rt} + dep_x\)的最大值即可。然后我们在第二棵树上枚举\(Lca\),然后计算贡献即可。最后就是如何合并两个点的贡献,发现我们重建之后的边分树是一棵二叉树,它有着线段树的形态,所以我们直接像线段树合并一样将贡献合并起来即可,复杂度是正确的。

Code

#pragma GCC optimize (2,"inline","Ofast") #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 4e5 + 500; typedef pair<int, int> P; const ll INF = 1e15; #define fi first #define se second #define mk make_pair struct Graph { struct edge { int to, nxt, w; }E[N << 3]; int head[N << 2]; int tot; Graph() { tot = 1; memset(head, -1, sizeof head);} void Addedge(int u, int v, int w) { E[++tot].to = v; E[tot].nxt = head[u]; head[u] = tot; E[tot].w = w; E[++tot].to = u; E[tot].nxt = head[v]; head[v] = tot; E[tot].w = w; } void Print() { for(int i = 2; i <= tot; i += 2) { cerr << E[i].to << " " << E[i ^ 1].to << endl; } } }T1, T2, DvT; int n, ndcnt, Mn, id, cnt; int sz[N << 2], vis[N << 3], ch[N << 6][2], rt[N << 2]; P PA[N << 2]; ll val[N << 6][2], dep[N]; ll ans = -INF; void read(int &x) { x = 0; int f = 1; char ch = getchar(); while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();} while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar(); x *= f; } void Rebuild(int o, int fa) { int las = o; for(int i = T1.head[o]; ~i; i = T1.E[i].nxt) { int to = T1.E[i].to; if(to == fa) continue; dep[to] = dep[o] + T1.E[i].w; Rebuild(to, o); DvT.Addedge(las, ++ndcnt, 0); DvT.Addedge(ndcnt, to, T1.E[i].w); las = ndcnt; } } void GetEg(int o, int fa, int SZ) { sz[o] = 1; for(int i = DvT.head[o]; ~i; i = DvT.E[i].nxt) { int to = DvT.E[i].to; if(to == fa || vis[i]) continue ; GetEg(to, o, SZ); sz[o] += sz[to]; if(Mn > max(sz[to], SZ - sz[to])) Mn = max(sz[to], SZ - sz[to]), id = i; } } void Getdep(int o, int fa, ll d, int c) { if(o <= n) { ++cnt; if(!PA[o].fi) rt[o] = cnt; else ch[PA[o].fi][PA[o].se] = cnt; PA[o] = mk(cnt, c); val[cnt][c] = dep[o] + d; val[cnt][c ^ 1] = -INF; } sz[o] = 1; for(int i = DvT.head[o]; ~i; i = DvT.E[i].nxt) { int to = DvT.E[i].to; if(to == fa || vis[i]) continue ; Getdep(to, o, d + DvT.E[i].w, c); sz[o] += sz[to]; } } void Solve(int o, int SZ) { if(SZ == 1) return ; Mn = 1e9; GetEg(o, 0, SZ); int x = DvT.E[id].to, y = DvT.E[id ^ 1].to; vis[id] = vis[id ^ 1] = 1; Getdep(x, 0, 0, 0); Getdep(y, 0, DvT.E[id].w, 1); Solve(x, sz[x]); Solve(y, sz[y]); } int Merge(int x, int y, ll Dp) { if(!x || !y) return x | y; ans = max(ans, max(val[x][0] + val[y][1], val[x][1] + val[y][0]) - Dp); val[x][0] = max(val[x][0], val[y][0]); ch[x][0] = Merge(ch[x][0], ch[y][0], Dp); val[x][1] = max(val[x][1], val[y][1]); ch[x][1] = Merge(ch[x][1], ch[y][1], Dp); return x; } void Dfs(int o, int fa, ll d) { ans = max(ans, 2ll * (dep[o] - d)); for(int i = T2.head[o]; ~i; i = T2.E[i].nxt) { int to = T2.E[i].to; if(to == fa) continue; Dfs(to, o, d + T2.E[i].w); rt[o] = Merge(rt[o], rt[to], d * 2); } } int main() { read(n); ndcnt = n; for(int i = 1, u, v, w; i < n; i++) { read(u); read(v); read(w); T1.Addedge(u, v, w); } for(int i = 1, u, v, w; i < n; i++) { read(u); read(v); read(w); T2.Addedge(u, v, w); } Rebuild(1, 1); Solve(1, ndcnt); Dfs(1, 0, 0); printf("%lld\n", ans / 2); return 0; }

转载于:https://www.cnblogs.com/Apocrypha/p/10569832.html

相关资源:JAVA上百实例源码以及开源项目
最新回复(0)