A^x = D (mod P)
0 <= x <= M, here M is a given integer.
1 <= A, P < 2^31, 0 <= D < P, 1 <= M < 2^63
----------------------------------------------------------
裸拓展baby step giant step
先转成非拓展版,然后如果在转的过程中就出解了,则return 1,否则就找出=D的起点和循环节长度,然后直接求解。
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> const int Hash_MOD = 1000003; typedef long long LL; typedef unsigned long long ULL; LL times; struct link { LL link; int val,next; }es[100000]; struct triple { LL x,y,g; triple(const LL _x = 0,const LL _y = 0,const LL _g = 0): x(_x),y(_y),g(_g){} }; int H[Hash_MOD * 2],ec; triple exgcd(const LL a,const LL b) { if (!b) return triple(1,0,a); const triple last(exgcd(b,a%b)); return triple(last.y,last.x - a / b * last.y,last.g); } LL rem_equ(const LL a,const LL b,const LL c) { //ax == c (mod b) //ax mod b == c const triple tmp(exgcd(a,b)); const LL MOD = (b / tmp.g); return ((tmp.x * (c / tmp.g) % MOD) + MOD) % MOD; } LL find(const LL x) { for (int i = H[x%Hash_MOD]; i; i = es[i].next) if (es[i].link == x) return es[i].val; return -1; } void insert(LL x,const LL v) { if (find(x) != -1) return; const LL key = x % Hash_MOD; es[++ec].next = H[key]; H[key] = ec; es[ec].link = x; es[ec].val = v; } LL BSGS(LL A,LL P,LL D) { LL AA = 1 % P,x = 1 % P,MOD = P,DD = D,m = static_cast<LL>(std::ceil(std::sqrt((double)P))); times = 0; for (triple tmp; (tmp = exgcd(A,P)).g != 1; ) { if (x == DD) return times++; if (D % tmp.g) return -1; P /= tmp.g; D /= tmp.g; (AA *= A / tmp.g) %= P; ++times; (x *= A) %= MOD; } A %= P; ec = 0; memset(H,0,sizeof H); LL tmp = 1 % P; for (int i = 0; i < m; ++i,(tmp *= A) %= P) insert(tmp,i); x = 1 % P; for (LL i = 0; i < m; ++i,(x *= tmp) %= P) { const int j = find(rem_equ(AA*x%P,P,D)); if (j != -1) return i * m + j + times; } return -1; } LL getphi(LL x) { LL res = 1; for (LL i = 2; i * i <= x; ++i) if (x % i == 0) { x /= i; res *= i - 1; while (x % i == 0) x /= i,res *= i; } if (x > 1) res *= x - 1; return res; } LL power(LL a,LL k,LL MOD) { //a ^ k % MOD LL res = 1 % MOD; for (; k; k/=2,(a *= a) %= MOD) if (k & 1) (res *= a) %= MOD; return res; } LL calc_len(const LL start,const LL A,const LL P,const LL D) { //A ^ (start + *this) == A ^ start == D (mod P) LL phi = getphi(P),res = phi; for (LL i = 2; i * i <= phi; ++i) { for (; phi % i == 0; phi /= i); for (; res % i == 0 && power(A,start + res/i,P) == D; res /= i); } if (phi > 1) for (; res % phi == 0 && power(A,start + res/phi,P) == D; res /= phi); return res; } ULL work(const LL A,const LL P,const LL D,const ULL M) { LL start = BSGS(A,P,D); //printf("%lld\n",start); if (start == -1 || start > M) return 0; else if (start < times) return 1; // LL phi=getphi(P); // if (power(A,start + phi,P) != D) return 1; ULL len = calc_len(start,A,P,D); return (M - start) / len + 1; } int main() { #ifndef ONLINE_JUDGE freopen("3254.in","r",stdin); freopen("3254.out","w",stdout); #endif LL A,P,D; ULL M; while (~scanf("%lld%lld%lld%llu",&A,&P,&D,&M)) printf("%llu\n",work(A%P,P,D,M)); }转载于:https://www.cnblogs.com/lazycal/p/zoj-3254.html