BZOJ4318 OSU!

mac2022-06-30  137

目录

BZOJ4318 OSU!题解code

BZOJ4318 OSU!

题目传送门

题解

一道比较简单的期望\(Dp\)。我们记\(f[i]\)为到第\(i\)位时的期望分数,\(g[i]\)为期望长度,分析一下转移我们可以发现连续1的长度从\(x-1\)变成\(x\)时,贡献变化为\(f[i]=f[i-1]+(3*g[i−1]^2+3*g[i−1]+1)*a[i]\)。所以我们可以记\(g1[i]\)表示到第\(i\)位时的期望长度的平方,\(g2[i]\)为期望长度。每次转移的时候同时更新这两个值。

code

#include <bits/stdc++.h> using namespace std; typedef long long ll; bool Finish_read; template<class T>inline void read(T &x){Finish_read=0;x=0;int f=1;char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;if(ch==EOF)return;ch=getchar();}while(isdigit(ch))x=x*10+ch-'0',ch=getchar();x*=f;Finish_read=1;} template<class T>inline void print(T x){if(x/10!=0)print(x/10);putchar(x+'0');} template<class T>inline void writeln(T x){if(x<0)putchar('-');x=abs(x);print(x);putchar('\n');} template<class T>inline void write(T x){if(x<0)putchar('-');x=abs(x);print(x);} /*================Header Template==============*/ const int maxn=1e5+500; int n; double x; double f[maxn],g1[maxn],g2[maxn]; /*==================Define Area================*/ int main() { read(n); for(int i=1;i<=n;i++) { scanf("%lf",&x); g1[i]=(g1[i-1]+1)*x; g2[i]=(g2[i-1]+2*g1[i-1]+1)*x; f[i]=f[i-1]+(3*g2[i-1]+3*g1[i-1]+1)*x; } printf("%.1lf\n",f[n]); return 0; }

转载于:https://www.cnblogs.com/Apocrypha/p/9431782.html

最新回复(0)