6-1 二叉搜索树的操作集(30 分)

mac2022-06-30  96

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X ); BinTree Delete( BinTree BST, ElementType X ); Position Find( BinTree BST, ElementType X ); Position FindMin( BinTree BST ); Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position; typedef Position BinTree; struct TNode{ ElementType Data; BinTree Left; BinTree Right; }; 函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;函数FindMin返回二叉搜索树BST中最小元结点的指针;函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h> #include <stdlib.h> typedef int ElementType; typedef struct TNode *Position; typedef Position BinTree; struct TNode{ ElementType Data; BinTree Left; BinTree Right; }; void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */ void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */ BinTree Insert( BinTree BST, ElementType X ); BinTree Delete( BinTree BST, ElementType X ); Position Find( BinTree BST, ElementType X ); Position FindMin( BinTree BST ); Position FindMax( BinTree BST ); int main() { BinTree BST, MinP, MaxP, Tmp; ElementType X; int N, i; BST = NULL; scanf("%d", &N); for ( i=0; i<N; i++ ) { scanf("%d", &X); BST = Insert(BST, X); } printf("Preorder:"); PreorderTraversal(BST); printf("\n"); MinP = FindMin(BST); MaxP = FindMax(BST); scanf("%d", &N); for( i=0; i<N; i++ ) { scanf("%d", &X); Tmp = Find(BST, X); if (Tmp == NULL) printf("%d is not found\n", X); else { printf("%d is found\n", Tmp->Data); if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data); if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data); } } scanf("%d", &N); for( i=0; i<N; i++ ) { scanf("%d", &X); BST = Delete(BST, X); } printf("Inorder:"); InorderTraversal(BST); printf("\n"); return 0; } /* 你的代码将被嵌在这里 */

输入样例:

10 5 8 6 2 4 1 0 10 9 7 5 6 3 10 0 5 5 5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9 6 is found 3 is not found 10 is found 10 is the largest key 0 is found 0 is the smallest key 5 is found Not Found Inorder: 1 2 4 6 8 9

代码;

BinTree Insert( BinTree BST, ElementType X ){ if(!BST) { BST=(BinTree)malloc(sizeof(struct TNode)); BST->Data=X; BST->Left=BST->Right=NULL; } else { if(X<BST->Data) BST->Left=Insert(BST->Left,X); else if(X>BST->Data) BST->Right=Insert(BST->Right,X); } return BST;}BinTree Delete( BinTree BST, ElementType X ){ Position Tmp; if(!BST) printf("Not Found\n"); else { if(X<BST->Data) BST->Left=Delete(BST->Left,X); else if(X>BST->Data) BST->Right=Delete(BST->Right,X); else { if(BST->Left&&BST->Right) { Tmp=FindMin(BST->Right); BST->Data=Tmp->Data; BST->Right=Delete(BST->Right,BST->Data); } else { Tmp=BST; if(!BST->Left) BST=BST->Right; else BST=BST->Left; free(Tmp); } } } return BST;}Position Find( BinTree BST, ElementType X ){ if(!BST) return NULL; if(X>BST->Data) return Find(BST->Right,X); else if(X<BST->Data) return Find(BST->Left,X); else return BST;}Position FindMin( BinTree BST ){ if(!BST) return NULL; else if(!BST->Left) return BST; else return FindMin(BST->Left);}Position FindMax( BinTree BST ){ if(BST) while(BST->Right) BST=BST->Right; return BST;}

转载于:https://www.cnblogs.com/linguiquan/p/8933623.html

相关资源:图像清晰度评价方法——熵函数法
最新回复(0)