本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;函数FindMin返回二叉搜索树BST中最小元结点的指针;函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
代码;
BinTree Insert( BinTree BST, ElementType X ){ if(!BST) { BST=(BinTree)malloc(sizeof(struct TNode)); BST->Data=X; BST->Left=BST->Right=NULL; } else { if(X<BST->Data) BST->Left=Insert(BST->Left,X); else if(X>BST->Data) BST->Right=Insert(BST->Right,X); } return BST;}BinTree Delete( BinTree BST, ElementType X ){ Position Tmp; if(!BST) printf("Not Found\n"); else { if(X<BST->Data) BST->Left=Delete(BST->Left,X); else if(X>BST->Data) BST->Right=Delete(BST->Right,X); else { if(BST->Left&&BST->Right) { Tmp=FindMin(BST->Right); BST->Data=Tmp->Data; BST->Right=Delete(BST->Right,BST->Data); } else { Tmp=BST; if(!BST->Left) BST=BST->Right; else BST=BST->Left; free(Tmp); } } } return BST;}Position Find( BinTree BST, ElementType X ){ if(!BST) return NULL; if(X>BST->Data) return Find(BST->Right,X); else if(X<BST->Data) return Find(BST->Left,X); else return BST;}Position FindMin( BinTree BST ){ if(!BST) return NULL; else if(!BST->Left) return BST; else return FindMin(BST->Left);}Position FindMax( BinTree BST ){ if(BST) while(BST->Right) BST=BST->Right; return BST;}
转载于:https://www.cnblogs.com/linguiquan/p/8933623.html
相关资源:图像清晰度评价方法——熵函数法