Primes and Multiplication

mac2022-06-30  133

Primes and Multiplication Codeforces1228C 题目链接:https://codeforces.com/contest/1228/problem/C

思路

prime( x ) : x 的质因数g (x,p) : x的能被p整除的最大因数(如果p为质数可以理解为x质因数分解后p出现的次数 )f (x,k)= g (k, prime(x) )f(x,1) * f(x,2) * f(x,3) * … f(x,n) = g(1, prime(x) ) * g(2, prime(x) ) * g(3, prime(x) ) * … g(n,prime(x) );上式 = g( n!, prime(x) ),于是可以参考 n! 的质因数分解方法 : (1). 先求出x 的质因数,即 prime(x) = p1,p2,…pk (2). 对每个质因数 p i p_{i} pi g (n! , p i p_{i} pi) = p i m pi^{m} pim 其中 m = ⌊ n p i ⌋ \lfloor\frac{n}{pi}\rfloor pin+ ⌊ n p i 2 ⌋ \lfloor\frac{n}{pi^2}\rfloor pi2n+ ⌊ n p i 3 ⌋ \lfloor\frac{n}{pi^3}\rfloor pi3n+… (3). 程序中 m i m_{i} mi = get(n, p i p_{i} pi) 最后答案 ans = p 1 m 1 p_{1}^{m_{1}} p1m1 * p 2 m 2 p_{2}^{m_{2}} p2m2 * p 3 m 3 p_{3}^{m_{3}} p3m3 * … * p k m k p_{k}^{m_{k}} pkmk (% mod)

代码

#include <iostream> #include <vector> using namespace std; typedef long long LL; const LL MOD = 1e9 + 7; int x; LL n; LL mpow(LL x, LL n) { LL res = 1; while (n > 0) { if (n & 1) res = (res * x) % MOD; x = (x * x) % MOD; n >>= 1; } return res; } LL get(LL n, LL p) { LL s = 0; while (n) s += n / p, n /= p; return s; } int main() { scanf("%d%lld", &x, &n); vector<int> v; for (int i = 2; i * i <= x; i++) { if (x % i == 0) { while (x % i == 0) { x /= i; } v.push_back(i); } } if (x > 1) { v.push_back(x); } LL ans = 1; for (int i = 0; i < v.size(); i++) { ans = (ans * mpow((LL) v[i], get(n, (LL) v[i]) ) ) % MOD; } printf("%lld\n", ans); }
最新回复(0)