最小二乘法和最大似然估计的联系和区别(转)

mac2022-06-30  75

对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。显然,这是从不同原理出发的两种参数估计方法。

在最大似然法中,通过选择参数,使已知数据在某种意义下最有可能出现,而某种意义通常指似然函数最大,而似然函数又往往指数据的概率分布函数。 与最小二乘法不同的是,最大似然法需要已知这个概率分布函数,这在实践中是很困难的。一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和 最小二乘估计相同。   最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数,从概率统计的角度处理线性回归并在似然概率函数为高斯函数的假设下同最小二乘建立了的联系。    

最小二乘法?为神马不是差的绝对值

http://blog.sciencenet.cn/blog-430956-621997.html   二者联系和区别 http://blog.csdn.net/rosenor1/article/details/52268039

转载于:https://www.cnblogs.com/shixisheng/p/7252427.html

相关资源:JAVA上百实例源码以及开源项目
最新回复(0)