import cv2
def sort_contours(cnts, method=
"left-to-right"):
reverse =
False
i =
0
if method ==
"right-to-left" or method ==
"bottom-to-top":
reverse =
True
if method ==
"top-to-bottom" or method ==
"bottom-to-top":
i = 1
boundingBoxes = [cv2.boundingRect(c)
for c
in cnts]
#用一个最小的矩形,把找到的形状包起来x,y,h,w
(cnts, boundingBoxes) = zip(*
sorted(zip(cnts, boundingBoxes),
key=
lambda b: b[1][i], reverse=
reverse))
return cnts, boundingBoxes
def resize(image, width=None, height=None, inter=
cv2.INTER_AREA):
dim =
None
(h, w) = image.shape[:2
]
if width
is None
and height
is None:
return image
if width
is None:
r = height /
float(h)
dim = (int(w *
r), height)
else:
r = width /
float(w)
dim = (width, int(h *
r))
resized = cv2.resize(image, dim, interpolation=
inter)
return resized
import cv2
import numpy as np
import myutils
from imutils
import contours
def cv_show(str,thing):
cv2.imshow(str, thing)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 指定信用卡类型
FIRST_NUMBER =
{
"3":
"American Express",
"4":
"Visa",
"5":
"MasterCard",
"6":
"Discover Card"
}
img=cv2.imread(
"D:\images\ocr_a_reference.png")
# 灰度图
ref =
cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#二值化
ref=cv2.threshold(ref,10,255,cv2.THRESH_BINARY_INV)[1
]
cv_show("img_ref",ref)
# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
ref_,refCnts,hierarchy=
cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,0,255),3
)
cv_show('img',img)
print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method=
"left-to-right")[0]
#排序,从左到右,从上到下
digits =
{}
for (i, c)
in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) =
cv2.boundingRect(c)
roi = ref[y:y + h, x:x +
w]
roi = cv2.resize(roi, (57, 88
))
# 每一个数字对应每一个模板
digits[i] =
roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3
))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5
))
#读取输入图像,预处理
image = cv2.imread(
"D:\images\credit_card_01.png")
cv_show('image',image)
image = myutils.resize(image, width=300
)
gray =
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)
#礼帽操作,突出更明亮的区域
tophat =
cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show('tophat',tophat)
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0,
#ksize=-1相当于用3*3的
ksize=-1
)
gradX =
np.absolute(gradX)
(minVal, maxVal) =
(np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal -
minVal)))
gradX = gradX.astype(
"uint8")
print (np.array(gradX).shape)
cv_show('gradX',gradX)
#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX =
cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255
,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1
]
cv_show('thresh',thresh)
#再来一个闭操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
#再来一个闭操作
cv_show(
'thresh',thresh)
# 计算轮廓
thresh_, threshCnts, hierarchy =
cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts =
threshCnts
cur_img =
image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3
)
cv_show('img',cur_img)
locs =
[]
# 遍历轮廓
for (i, c)
in enumerate(cnts):
# 计算矩形
(x, y, w, h) =
cv2.boundingRect(c)
ar = w /
float(h)
# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5
and ar < 4.0
:
if (w > 40
and w < 55)
and (h > 10
and h < 20
):
#符合的留下来
locs.append((x, y, w, h))
# 将符合的轮廓从左到右排序
locs = sorted(locs, key=
lambda x:x[0])
output =
[]
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH))
in enumerate(locs):
# initialize the list of group digits
groupOutput =
[]
# 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5
]
cv_show('group',group)
# 预处理
group = cv2.threshold(group, 0, 255
,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1
]
cv_show('group',group)
# 计算每一组的轮廓
group_,digitCnts,hierarchy =
cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts =
contours.sort_contours(digitCnts,
method=
"left-to-right")[0]
# 计算每一组中的每一个数值
for c
in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) =
cv2.boundingRect(c)
roi = group[y:y + h, x:x +
w]
roi = cv2.resize(roi, (57, 88
))
cv_show('roi',roi)
# 计算匹配得分
scores =
[]
# 在模板中计算每一个得分
for (digit, digitROI)
in digits.items():
# 模板匹配
result =
cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) =
cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append(str(np.argmax(scores)))
# 画出来
cv2.rectangle(image, (gX - 5, gY - 5
),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1
)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15
),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2
)
# 得到结果
output.extend(groupOutput)
# 打印结果
print(
"Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print(
"Credit Card #: {}".format(
"".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
下面样图适用
转载于:https://www.cnblogs.com/xujunjia/p/11456133.html
相关资源:人民币识别系统.rar