pipeline结合GridSearchCV的一点小介绍

mac2022-06-30  117

1 clf = tree.DecisionTreeClassifier() 2 3 ''' 4 5 GridSearchCV search the best params 6 ''' 7 pipeline = Pipeline([('tree', clf), ("svm", svm)]) 8 9 10 11 param_test = dict(tree__min_samples_leaf=range(5, 16, 2), tree__criterion=["gini","entropy"],svm__C=[0.1, 1, 10]) 12 gsearch2 = GridSearchCV(pipeline,param_grid=param_test, scoring="accuracy", n_jobs=2, cv=5) 13 gsearch2.fit(np.array(x_train), np.array(y_train)) 14 print(gsearch2.best_estimator_) pipeline 联合estimator,使其使用一个fit,简化代码。命名规则: pipeline = Pipeline([('tree', clf), ("svm", svm)]) param_test = dict(tree__min_samples_leaf=range(5, 16, 2), tree__criterion=["gini","entropy"],svm__C=[0.1, 1, 10]) 'tree'(自己设定的名称)通过“__”连接estimator的参数(min_samples_leaf),range代表取值范围。 例如,min_samples_leaf为决策树里面的一个参数设置,tree.DecisionTreeClassifier(min_samples_leaf=?) pipeline的流程在次不做介绍。  

转载于:https://www.cnblogs.com/shizhenqiang/p/8286730.html

最新回复(0)