cf551 D. GukiZ and Binary Operations

mac2022-06-30  74

链接

点击跳转

题解

可以发现每一位都是单独的,分开来做 d p dp dp

f i , 0 / 1 , 0 / 1 f_{i,0/1,0/1} fi,0/1,0/1表示长度为 i i i 01 01 01序列,最后一位是 0 / 1 0/1 0/1,或起来的结果是 0 / 1 0/1 0/1的方案数

矩阵加速转移

代码

#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define iinf 0x3f3f3f3f #define linf (1ll<<60) #define eps 1e-8 #define maxn 1000010 #define maxe 1000010 #define cl(x) memset(x,0,sizeof(x)) #define rep(_,__) for(_=1;_<=(__);_++) #define em(x) emplace(x) #define emb(x) emplace_back(x) #define emf(x) emplace_front(x) #define fi first #define se second #define de(x) cerr<<#x<<" = "<<x<<endl using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef pair<int,int> pii; typedef pair<ll,ll> pll; ll n, l, k, mod; ll read(ll x=0) { ll c, f(1); for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f; for(;isdigit(c);c=getchar())x=x*10+c-0x30; return f*x; } struct Matrix { ll n, m, a[30][30]; ll* operator[](ll x){return a[x];} Matrix(ll x, ll y) { n=x, m=y; ll i, j; rep(i,n)rep(j,n)a[i][j]=0; } Matrix(vector<vector<ll>> v) { ll i, j; n=v.size(), m=v[0].size(); rep(i,n)rep(j,m)a[i][j]=v[i-1][j-1]%mod; } friend Matrix operator*(Matrix a, Matrix b) { Matrix t(a.n,b.m); ll i, j, k; rep(i,t.n)rep(k,a.m)rep(j,t.m)(t[i][j]+=a[i][k]*b[k][j])%=mod; return t; } void show() { ll i, j; cerr<<"Matrix "<<n<<"*"<<m<<":"<<endl; for(i=1;i<=n;i++) { for(j=1;j<=m;j++)cerr<<a[i][j]; cerr<<endl; } } friend Matrix operator^(Matrix a, ll b) { ll i, j; Matrix t(a.n,a.m), ans(a.n,a.m); rep(i,a.n)rep(j,a.m)t[i][j]=a[i][j]; rep(i,a.n)ans[i][i]=1; for(;b;b>>=1,t=t*t)if(b&1)ans=ans*t; return ans; } }; struct EasyMath { ll prime[maxn]; bool mark[maxn]; ll fastpow(ll a, ll b, ll c) { ll t(a%c), ans(1ll); for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c; return ans; } void get_prime(ll N) { ll i, j; for(i=2;i<=N;i++)mark[i]=false; *prime=0; for(i=2;i<=N;i++) { if(!mark[i])prime[++*prime]=i; for(j=1;j<=*prime and i*prime[j]<=N;j++) { mark[i*prime[j]]=true; if(i%prime[j]==0)break; } } } }em; int main() { cin>>n>>k>>l>>mod; if(k>=(1ll<<l) and l<=62){cout<<0;return 0;} Matrix f( { {2},{0},{1},{1} } ); Matrix T( { {1,0,1,0}, {0,1,0,1}, {1,0,0,0}, {0,1,1,1} } ); f = (T^(n-2)) * f; ll t=0; while(k)t+=k&1, k>>=1; cout << ( em.fastpow(f[1][1]+f[3][1],l-t,mod) * em.fastpow(f[2][1]+f[4][1],t,mod) ) %mod; return 0; }
最新回复(0)