第十七章:并发处理
本章主要讨论Python3引入的concurrent.futures模块。在python2.7中需要用pip install futures来安装。concurrent.futures 是python3新增加的一个库,用于并发处理,提供了多线程和多进程的并发功能 类似于其他语言里的线程池(也有一个进程池),他属于上层的封装,对于用户来说,不用在考虑那么多东西了。
使用方法: 1 Executor:两个子类ThreadPoolExecutor和ProcessPoolExecutor分别是线程和进程 submit(fn,*args,**kwargs): fn是需要异步执行的函数,args,kwargs为给函数传递的参数
2 map(func, *iterables, timeout=None) 此map函数和Python自带的map函数功能类似,只不过concurrent模块的map函数从迭代器获得参数后异步执行。并且,每一个异步操作,能用timeout参数来设置超时时间,timeout的值可以是int或float型,如果操作timeout的话,会raisesTimeoutError。如果timeout参数不指定的话,则不设置超时间。 func:为需要异步执行的函数 iterables:可以是一个能迭代的对象,例如列表等。每一次func执行,会从iterables中取参数。 timeout:设置每次异步操作的超时时间
3 Future: Future实例是由Executor.submit()创建的。Future提供了丰富的方法来处理调用。
Future.cancel: 用cancel(),可以终止某个线程和进程的任务,返回状态为 True False
Future.cancelled():判断是否真的结束了任务。
Future.running():判断是否还在运行
Future.done():判断是正常执行完毕的。
Future.result(timeout=None): 针对result结果做超时的控制。
4 Wait: wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTION和ALL_COMPLETE,默认设置为ALL_COMPLETED。三个参数的意义分别如下:
FIRST_COMPLETED - Return when any future finishes or is cancelled. FIRST_EXCEPTION - Return when any future finishes by raising an exception. If no future raises an exception then it is equivalent to ALL_COMPLETED. ALL_COMPLETED - Return when all futures finish or are cancelled.
下面来看一个实际的例子:
def caculate_value_by_wait(x): time.sleep(1) print 'The value of x*x=%d' % (x*x)if __name__=="__main__": num=[1,2,3,4,5,6] start_time=time.clock() for n in num: caculate_value_by_wait(n) (1) print 'The toal time is %d' % (time.clock()-start_time) start_time1=time.clock() with futures.ThreadPoolExecutor(max_workers=6) as executor: (2) for n in num: executor.submit(caculate_value_by_wait,n) print 'Thread pool consume time is %d' % (time.clock()-start_time1) start_time2=time.clock() with futures.ProcessPoolExecutor(max_workers=6) as executor: (3) for n in num: executor.submit(caculate_value_by_wait,n) print 'Process pool consume time is %d' % (time.clock()-start_time2)
在这个例子中,分别用线性,多线程和多进程执行了caculate_value_by_wait。执行结果如下:在caculate_value_by_wait中每一次操作都会等待1秒。因此线性的执行总的时间为6秒。而多线程和多进程执行则总共耗时1秒
E:\python2.7.11\python.exe E:/py_prj/fluent_python/chapter17.py
The value of x*x=1
The value of x*x=4
The value of x*x=9
The value of x*x=16
The value of x*x=25
The value of x*x=36
The toal time is 6
The value of x*x=4
The value of x*x=1
The value of x*x=9
The value of x*x=16
The value of x*x=25The value of x*x=36
Thread pool consume time is 1
The value of x*x=1
The value of x*x=4
The value of x*x=9
The value of x*x=16
The value of x*x=25
The value of x*x=36
Process pool consume time is 1
如果是用map函数来改造的话,可以写成如下:
with futures.ProcessPoolExecutor(max_workers=6) as executor: executor.map(caculate_value_by_wait,num) 在上面的多线程或者多进程中,我们还可以进一步对每个线程进行监控。方法就是用Future。代码如下 def caculate_value_by_wait(x): time.sleep(1) return x*xif __name__=="__main__": num=[1,2,3,4,5,6] with futures.ThreadPoolExecutor(max_workers=6) as executor: future_task=[executor.submit(caculate_value_by_wait,n) for n in num] (1) for f in future_task: if f.running(): (2) print '%s is running' % str(f) for f in as_completed(future_task): (3) try: ret=f.done() (4) if ret: f_ret=f.result() (5) print '%s done,result is %s' % (str(f),str(f_ret)) except BaseException,e: f.cancel() print e (1) future_task得到所有运行的实例对象 (2) 判断线程是否在运行 (3) 得到完成线程的列表 (4) 判断是否真的完成,是返回True,否则返回False (5) 得到各个线程返回的对象 得到的结果如下: E:\python2.7.11\python.exe E:/py_prj/fluent_python/chapter17.py <Future at 0x17cfed0 state=running> is running <Future at 0x17d9050 state=running> is running <Future at 0x17d9210 state=running> is running <Future at 0x17d93d0 state=running> is running <Future at 0x17d9590 state=running> is running <Future at 0x17d9750 state=running> is running <Future at 0x17d9210 state=finished returned int> done,result is 9 <Future at 0x17cfed0 state=finished returned int> done,result is 1 <Future at 0x17d93d0 state=finished returned int> done,result is 16 <Future at 0x17d9050 state=finished returned int> done,result is 4 <Future at 0x17d9750 state=finished returned int> done,result is 36 <Future at 0x17d9590 state=finished returned int> done,result is 25
再来看下wait的用法:
if __name__=="__main__": num=[1,2,3,4,5,6] with futures.ThreadPoolExecutor(max_workers=6) as executor: future_task=[executor.submit(caculate_value_by_wait,n) for n in num] for f in future_task: if f.running(): print '%s is running' % str(f) results=wait(future_task) (1) done=results[0] (2) not_done=results[1] (3) print 'The threads that have finished %s' % done print 'The threads that not have finished %s' % not_done for x in done: print x for y in not_done: print y(1) 得到所有的线程
(2) 得到已完成的线程
(3) 得到未完成的线程
运行结果如下:
E:\python2.7.11\python.exe E:/py_prj/fluent_python/chapter17.py
<Future at 0x177def0 state=running> is running
<Future at 0x1788070 state=running> is running
<Future at 0x1788230 state=running> is running
<Future at 0x17883f0 state=running> is running
<Future at 0x17885b0 state=running> is running
<Future at 0x1788770 state=running> is running
The threads that have finished set([<Future at 0x1788230 state=finished returned int>, <Future at 0x1788070 state=finished returned int>, <Future at 0x177def0 state=finished returned int>, <Future at 0x1788770 state=finished returned int>, <Future at 0x17885b0 state=finished returned int>, <Future at 0x17883f0 state=finished returned int>])
The threads that not have finished set([])
<Future at 0x1788230 state=finished returned int>
<Future at 0x1788070 state=finished returned int>
<Future at 0x177def0 state=finished returned int>
<Future at 0x1788770 state=finished returned int>
<Future at 0x17885b0 state=finished returned int>
<Future at 0x17883f0 state=finished returned int>
转载于:https://www.cnblogs.com/zhanghongfeng/p/7367937.html