(线性dp,LCS) POJ 1458 Common Subsequence

mac2022-06-30  103

Common Subsequence Time Limit: 1000MS Memory Limit: 10000KTotal Submissions: 65333 Accepted: 27331

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc abfcab programming contest abcd mnp

Sample Output

4 2 0最长公共子序列问题(LCS) 其状态转换式为:A[i] = A[j]时,d(i,j) = d(i-1,j-1) + 1,否则d(i,j) = max{d(i-1,j),d(i,j-1)}这个用char数组吧,用string可能出错,。。。打表C++代码: #include<iostream> #include<cstring> #include<string> #include<cstdio> #include<algorithm> using namespace std; const int maxn = 10000; int dp[maxn][maxn]; char s1[maxn]; char s2[maxn]; int len1,len2; int main(){ while(~scanf("%s%s",s1,s2)){ len1 = strlen(s1); len2 = strlen(s2); for(int i = 0; i <= len1; i++){ dp[i][0] = 0; } for(int j = 0; j <= len2; j++){ dp[0][j] = 0; } for(int i = 1; i <= len1; i++){ for(int j = 1; j <= len2; j++){ if(s1[i-1] == s2[j-1]) dp[i][j] = dp[i-1][j-1] + 1; else dp[i][j] = max(dp[i][j-1],dp[i-1][j]); } } printf("%d\n",dp[len1][len2]); } return 0; }

 

转载于:https://www.cnblogs.com/Weixu-Liu/p/10512418.html

相关资源:JAVA上百实例源码以及开源项目
最新回复(0)