赫夫曼编码

mac2024-03-11  17

数据结构(C语言版)赫夫曼编码

#include<stdlib.h> #include<stdio.h> #include<string.h> typedef struct { int weight;//结点权重 int parent, left, right;//父结点、左孩子、右孩子在数组中的位置下标 }HTNode, *HuffmanTree; //动态二维数组,存储哈夫曼编码 typedef char ** HuffmanCode; //HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置,s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置 void Select(HuffmanTree HT, int end, int *s1, int *s2) { int min1, min2; //遍历数组初始下标为 1 int i = 1; //找到还没构建树的结点 while(HT[i].parent != 0 && i <= end){ i++; } min1 = HT[i].weight; *s1 = i; i++; while(HT[i].parent != 0 && i <= end){ i++; } //对找到的两个结点比较大小,min2为大的,min1为小的 if(HT[i].weight < min1) { min2 = min1; *s2 = *s1; min1 = HT[i].weight; *s1 = i; } else { min2 = HT[i].weight; *s2 = i; } //两个结点和后续的所有未构建成树的结点做比较 for(int j=i+1; j <= end; j++) { //如果有父结点,直接跳过,进行下一个 if(HT[j].parent != 0) { continue; } //如果比最小的还小,将min2=min1,min1赋值新的结点的下标 if(HT[j].weight < min1) { min2 = min1; min1 = HT[j].weight; *s2 = *s1; *s1 = j; } //如果介于两者之间,min2赋值为新的结点的位置下标 else if(HT[j].weight >= min1 && HT[j].weight < min2) { min2 = HT[j].weight; *s2 = j; } } } //HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数 void CreateHuffmanTree(HuffmanTree *HT, int *w, int n) { if(n<=1) return; // 如果只有一个编码就相当于0 int m = 2*n-1; // 哈夫曼树总节点数,n就是叶子结点 *HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用 HuffmanTree p = *HT; // 初始化哈夫曼树中的所有结点 for(int i = 1; i <= n; i++) { (p+i)->weight = *(w+i-1); (p+i)->parent = 0; (p+i)->left = 0; (p+i)->right = 0; } //从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点 for(int i = n+1; i <= m; i++) { (p+i)->weight = 0; (p+i)->parent = 0; (p+i)->left = 0; (p+i)->right = 0; } //构建哈夫曼树 for(int i = n+1; i <= m; i++) { int s1, s2; Select(*HT, i-1, &s1, &s2); (*HT)[s1].parent = (*HT)[s2].parent = i; (*HT)[i].left = s1; (*HT)[i].right = s2; (*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight; } } //HT为哈夫曼树,HC为存储结点哈夫曼编码的二维动态数组,n为结点的个数 void HuffmanCoding(HuffmanTree HT, HuffmanCode *HC,int n) { *HC = (HuffmanCode) malloc((n+1) * sizeof(char *)); char *cd = (char *)malloc(n*sizeof(char)); //存放结点哈夫曼编码的字符串数组 cd[n-1] = '\0';//字符串结束符 for(int i=1; i<=n; i++){ //从叶子结点出发,得到的哈夫曼编码是逆序的,需要在字符串数组中逆序存放 int start = n-1; //当前结点在数组中的位置 int c = i; //当前结点的父结点在数组中的位置 int j = HT[i].parent; // 一直寻找到根结点 while(j != 0) { // 如果该结点是父结点的左孩子则对应路径编码为0,否则为右孩子编码为1 if(HT[j].left == c) cd[--start] = '0'; else cd[--start] = '1'; //以父结点为孩子结点,继续朝树根的方向遍历 c = j; j = HT[j].parent; } //跳出循环后,cd数组中从下标 start 开始,存放的就是该结点的哈夫曼编码 (*HC)[i] = (char *)malloc((n-start)*sizeof(char)); strcpy((*HC)[i], &cd[start]); } //使用malloc申请的cd动态数组需要手动释放 free(cd); } //打印哈夫曼编码的函数 void PrintHuffmanCode(HuffmanCode htable,int *w,int n) { printf("Huffman code : \n"); for(int i = 1; i <= n; i++) printf("%d code = %s\n",w[i-1], htable[i]); } int main(void) { int w[5] = {2, 8, 7, 6, 5}; int n = 5; HuffmanTree htree; HuffmanCode htable; CreateHuffmanTree(&htree, w, n); HuffmanCoding(htree, &htable, n); PrintHuffmanCode(htable,w, n); return 0; }
最新回复(0)