高斯回归权重空间过程

mac2024-03-19  27

高斯回归权重空间过程

笔记来源:https://www.bilibili.com/video/av70839977/?p=115
参考文献:

学习文献1 https://ww2.mathworks.cn/help/stats/gaussian-process-regression-models.html http://smellysheep.com/2018/07/%E9%AB%98%E6%96%AF%E8%BF%87%E7%A8%8B%E5%9B%9E%E5%BD%92/

( A + U C V ) − 1 = A − 1 − A − 1 U ( C − 1 + V A − 1 U ) − 1 V A − 1 (A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+VA^{-1} U\right)^{-1} V A^{-1} (A+UCV)1=A1A1U(C1+VA1U)1VA1

方差: Φ ( x ∗ ) Σ p Φ ( x ∗ ) − Φ ( x ∗ ) T Σ p Φ ⊤ ( k + σ 2 I ) − 1 Φ Σ p Φ ( x ∗ ) \Phi\left(x^{*}\right) \Sigma_{p} \Phi\left(x^{*}\right)-\Phi\left(x^{*}\right)^{T} \Sigma p \Phi^{\top}\left(k+\sigma^{2} I\right)^{-1} \Phi \Sigma p \Phi\left(x^{*}\right) Φ(x)ΣpΦ(x)Φ(x)TΣpΦ(k+σ2I)1ΦΣpΦ(x) k = Φ Σ p Φ T Φ ( x ∗ ) T Σ p Φ T Φ ( x ∗ ) Σ p Φ ( x ∗ ) Φ Σ p Φ ( x ∗ ) k=\Phi\Sigma_{p}\Phi^{T}\\ \Phi(x^*)^T\Sigma_p\Phi^T\\ \Phi(x^*)\Sigma_p\Phi(x^*)\\ \Phi\Sigma_p\Phi(x^*) k=ΦΣpΦTΦ(x)TΣpΦTΦ(x)ΣpΦ(x)ΦΣpΦ(x)

最新回复(0)