CCF 乘用车细分市场销量预测 35个特征lgb单模0.6253

mac2024-05-07  33

CCF 乘用车细分市场销量预测 35个特征lgb单模0.6253

import sys # import shap import numpy as np import pandas as pd import os import gc from tqdm import tqdm, tqdm_notebook from sklearn.model_selection import StratifiedKFold, KFold from sklearn.metrics import f1_score, roc_auc_score from sklearn.metrics import mean_squared_error as mse from sklearn.preprocessing import LabelEncoder import datetime import time import matplotlib.pyplot as plt import lightgbm as lgb from sklearn.cluster import KMeans import xgboost as xgb from sklearn.externals import joblib import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.filterwarnings('ignore') train_sales = pd.read_csv('../input/train_sales_data.csv') train_search = pd.read_csv('../input/train_search_data.csv') train_user = pd.read_csv('../input/train_user_reply_data.csv') evaluation_public = pd.read_csv('../input/evaluation_public.csv') submit_example = pd.read_csv('../input/submit_example.csv') data = pd.concat([train_sales, evaluation_public], ignore_index=True) data = data.merge(train_search, 'left', on=['province', 'adcode', 'model', 'regYear', 'regMonth']) data = data.merge(train_user, 'left', on=['model', 'regYear', 'regMonth']) # data=pd.concat([data, k_mean_data], axis=1) data['label'] = data['salesVolume'] data['id'] = data['id'].fillna(0).astype(int) data['bodyType'] = data['model'].map(train_sales.drop_duplicates('model').set_index('model')['bodyType']) #LabelEncoder for i in ['bodyType', 'model']: data[i] = data[i].map(dict(zip(data[i].unique(), range(data[i].nunique())))) data['mt'] = (data['regYear'] - 2016) * 12 + data['regMonth'] def get_stat_feature(df_,): df = df_.copy() stat_feat = [] stat_feat_2=[] stat_feat_3 = [] stat_feat_4 = [] df['model_adcode'] = df['adcode'] + df['model'] df['model_adcode_mt'] = df['model_adcode'] * 100 + df['mt'] for col in ['label']: # 历史销量数据特征 for i in [1,2,3,4,5,6,8,9,10,11,12,13,14,15,16]: stat_feat.append('shift_model_adcode_mt_{}_{}'.format(col,i)) stat_feat_2.append('shift_model_adcode_mt_{}_{}'.format(col,i)) df['model_adcode_mt_{}_{}'.format(col,i)] = df['model_adcode_mt'] + i#新加一列值,等于车型*省*时间+i,寻求i个月前的值,将model_adcode_mt_作为索引 df_last = df[~df[col].isnull()].set_index('model_adcode_mt_{}_{}'.format(col,i)) df['shift_model_adcode_mt_{}_{}'.format(col,i)] = df['model_adcode_mt'].map(df_last[col])#后者索引是31000002开始,前者少i,取前面的匹配后面索引成功,就取值 for col in ['popularity']: # 历史销量数据特征 for i in [1,2,3,10,11,12]:#popularity只取一部分 stat_feat.append('shift_model_adcode_mt_{}_{}'.format(col,i)) stat_feat_2.append('shift_model_adcode_mt_{}_{}'.format(col,i)) df['model_adcode_mt_{}_{}'.format(col,i)] = df['model_adcode_mt'] + i#新加一列值,等于车型*省*时间+i,寻求i个月前的值,将model_adcode_mt_作为索引 df_last = df[~df[col].isnull()].set_index('model_adcode_mt_{}_{}'.format(col,i)) df['shift_model_adcode_mt_{}_{}'.format(col,i)] = df['model_adcode_mt'].map(df_last[col])#后者索引是31000002开始,前者少i,取前面的匹配后面索引成功,就取值 df["increase16_4"]=(df["shift_model_adcode_mt_label_16"]-df["shift_model_adcode_mt_label_4"])/df["shift_model_adcode_mt_label_16"]#同比一年前的增长 mean=pd.DataFrame(df.groupby(["model","mt"]).shift_model_adcode_mt_label_12.agg({"mean_province":"mean", "min_province":"min",})) df=pd.merge(df,mean,on=["model","mt"],how="left") mean=pd.DataFrame(df.groupby(["model","mt"]).shift_model_adcode_mt_label_15.agg({"mean_province_15":"mean",})) df=pd.merge(df,mean,on=["model","mt"],how="left") mean=pd.DataFrame(df.groupby(["model","mt"]).shift_model_adcode_mt_label_3.agg({"mean_province_3":"mean",})) df=pd.merge(df,mean,on=["model","mt"],how="left") mean=pd.DataFrame(df.groupby(["model","mt"]).shift_model_adcode_mt_label_16.agg({"mean_province_16":"mean",})) df=pd.merge(df,mean,on=["model","mt"],how="left") mean=pd.DataFrame(df.groupby(["model","mt"]).shift_model_adcode_mt_label_4.agg({"mean_province_4":"mean",})) df=pd.merge(df,mean,on=["model","mt"],how="left") #另一种统计方式 mean=pd.DataFrame(df.groupby(["adcode","mt"]).shift_model_adcode_mt_label_15.agg({"mean_Month_15":"mean"})) df=pd.merge(df,mean,on=["adcode","mt"],how="left") mean=pd.DataFrame(df.groupby(["adcode","mt"]).shift_model_adcode_mt_label_3.agg({"mean_Month_3":"mean"})) df=pd.merge(df,mean,on=["adcode","mt"],how="left") mean=pd.DataFrame(df.groupby(["adcode","mt"]).shift_model_adcode_mt_label_16.agg({"mean_Month_16":"mean"})) df=pd.merge(df,mean,on=["adcode","mt"],how="left") mean=pd.DataFrame(df.groupby(["adcode","mt"]).shift_model_adcode_mt_label_4.agg({"mean_Month_4":"mean"})) df=pd.merge(df,mean,on=["adcode","mt"],how="left") #基于统计特征的increase,强特 df["increase_mean_province_16_4"]=(df["mean_province_16"]-df["mean_province_4"])/df["mean_province_16"] df["increase_mean_province_15_3"]=(df["mean_province_15"]-df["mean_province_3"])/df["mean_province_15"] df["increase_mean_Month_15_3"]=(df["mean_Month_15"]-df["mean_Month_3"])/df["mean_Month_15"] df["increase_mean_Month_16_4"]=(df["mean_Month_16"]-df["mean_Month_4"])/df["mean_Month_16"] mean=pd.DataFrame(df.groupby(["adcode","mt"]).shift_model_adcode_mt_label_12.agg({"mean_Month":"mean",})) df=pd.merge(df,mean,on=["adcode","mt"],how="left") #几个月sum df["sum_1"]=df["shift_model_adcode_mt_label_11"].values+df["shift_model_adcode_mt_label_12"].values+df["shift_model_adcode_mt_label_1"].values+df["shift_model_adcode_mt_label_2"].values df["sum_2"]=df["shift_model_adcode_mt_label_12"].values+df["shift_model_adcode_mt_label_1"].values df["sum_3"]=df["shift_model_adcode_mt_label_3"].values+df["shift_model_adcode_mt_label_2"].values+df["shift_model_adcode_mt_label_1"].values stat_feat_4 = ["mean_province","min_province","mean_Month","sum_1","sum_2","sum_3","increase16_4", "increase_mean_province_15_3","increase_mean_Month_15_3","increase_mean_province_16_4","increase_mean_Month_16_4"]#所有统计特征 stat_feat.remove("shift_model_adcode_mt_label_15")#删掉两个特征 stat_feat.remove("shift_model_adcode_mt_label_16") return df,stat_feat+stat_feat_3+stat_feat_4 #下面基本和鱼佬一样 def score(data, pred='pred_label', label='label', group='model'): data['pred_label'] = data['pred_label'].apply(lambda x: 0 if x < 0 else x).round().astype(int) data_agg = data.groupby('model').agg({ pred: list, label: [list, 'mean'] }).reset_index() data_agg.columns = ['_'.join(col).strip() for col in data_agg.columns] nrmse_score = [] for raw in data_agg[['{0}_list'.format(pred), '{0}_list'. format(label), '{0}_mean'.format(label)]].values: nrmse_score.append(mse(raw[0], raw[1]) ** 0.5 / raw[2] ) print(1 - np.mean(nrmse_score)) return 1 - np.mean(nrmse_score) def get_model_type(train_x,train_y,valid_x,valid_y,m_type='lgb',i=0): if m_type == 'lgb': model = lgb.LGBMRegressor( num_leaves=2**5-1, reg_alpha=0.25, reg_lambda=0.25, objective='mse', max_depth=-1, learning_rate=0.05, min_child_samples=10, random_state=2019, n_estimators=2000, subsample=0.9, colsample_bytree=0.7,num_threads= -1, ) model.fit(train_x, train_y, eval_set=[(train_x, train_y),(valid_x, valid_y)], categorical_feature=cate_feat, early_stopping_rounds=100, verbose=100) joblib.dump(model, "lgbm_"+str(i)+".m") print("lgb_model_%d has saved"%i) elif m_type == 'xgb': model = xgb.XGBRegressor( max_depth=5 , learning_rate=0.05, n_estimators=2000, objective='reg:gamma', tree_method = 'hist',subsample=0.9, colsample_bytree=0.7, min_child_samples=5,eval_metric = 'rmse' ) model.fit(train_x, train_y, eval_set=[(train_x, train_y),(valid_x, valid_y)], early_stopping_rounds=100, verbose=100) joblib.dump(model, "xgbm_"+str(i)+".m") print("xgb_model_%d has saved"%i) return model def get_train_model(df_, m, m_type='lgb',i=0): df = df_.copy() # 数据集划分m=25,26,27,28, st = 13#start time all_idx = (df['mt'].between(st , m-1))#原版 train_idx = (df['mt'].between(st , m-5)) valid_idx = (df['mt'].between(m-4, m-4)) test_idx = (df['mt'].between(m , m )) # 最终确认 train_x = df[train_idx][features] train_y = df[train_idx]['n_label'] valid_x = df[valid_idx][features] valid_y = df[valid_idx]['n_label'] # get model model = get_model_type(train_x,train_y,valid_x,valid_y,m_type,i) # offline df['pred_label'] = np.expm1(model.predict(df[features])) best_score = score(df[valid_idx]) # online if m_type == 'lgb': model.n_estimators = model.best_iteration_ + 100 model.fit(df[all_idx][features], df[all_idx]['n_label'], categorical_feature=cate_feat) elif m_type == 'xgb': model.n_estimators = model.best_iteration + 100 model.fit(df[all_idx][features], df[all_idx]['n_label']) df['forecastVolum'] = np.expm1(model.predict(df[features])) print('valid mean:',df[valid_idx]['pred_label'].mean()) print('true mean:',df[valid_idx]['label'].mean()) print('test mean:',df[test_idx]['forecastVolum'].mean()) # 阶段结果 sub = df[test_idx][['id']] sub['forecastVolum'] = df[test_idx]['forecastVolum'].apply(lambda x: 0 if x < 0 else x).round().astype(int) print(sub.shape) return sub,df[valid_idx]['pred_label'] for month in [25,26,27,28]: m_type = 'lgb' data['n_label'] = np.log1p(data['label']) data_df, stat_feat = get_stat_feature(data)#每次都要更新下特征 num_feat = ['regYear'] + stat_feat cate_feat = ['adcode','bodyType','model','regMonth',]#,'k_mean_1','k_mean' if m_type == 'lgb': for i in cate_feat: data_df[i] = data_df[i].astype('category') elif m_type == 'xgb': lbl = LabelEncoder() for i in tqdm(cate_feat): data_df[i] = lbl.fit_transform(data_df[i].astype(str)) features = num_feat + cate_feat print(len(features), len(set(features))) sub,val_pred = get_train_model(data_df, month, m_type,month-24) data.loc[(data.regMonth==(month-24))&(data.regYear==2018), 'salesVolume'] = sub['forecastVolum'].values data.loc[(data.regMonth==(month-24))&(data.regYear==2018), 'label' ] = sub['forecastVolum'].values sub = data.loc[(data.regMonth>=1)&(data.regYear==2018), ['id','salesVolume']] sub.columns = ['id','forecastVolum'] sub[['id','forecastVolum']].round().astype(int).to_csv('../input/B_res.csv', index=False) #结果基于规则纠正 my_data=pd.read_csv('../input/B_res.csv') my_data["forecastVolum"]=my_data["forecastVolum"]*0.79-5 my_data["forecastVolum"]=(my_data["forecastVolum"]).astype(int) my_data.loc[my_data[my_data["forecastVolum"] < 4].index,"forecastVolum"]=4 my_data.loc[my_data[my_data["forecastVolum"] >9000].index,"forecastVolum"]=9000 my_data.to_csv('../input/submit.csv',index=0)
最新回复(0)