1:首先给出几个需要下载的工具网址 (1)protobuf: https://github.com/protocolbuffers/protobuf/releases/tag/v3.7.1 (我使用的是protobuf-all-3.7.1.zip 版本) (2)onnx-simplifier https://github.com/daquexian/onnx-simplifier(注意不用下载,直接使用pip进行安装即可,安装指令为:pip install onnx-simplifier) (3)ncnn https://github.com/Tencent/ncnn 2:用cmake编译protobuf (1)在protobuf-3.7.1目录下新建一个名为mybuild-vs2015的文件夹 (2)使用VS2015 x64本机工具命令提示符进入到解压目录 cd /d D:\onnx_android_ncnn\protobuf-all-3.7.1-test\protobuf-3.7.1\build-vs2015 (3)cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_MSVC_STATIC_RUNTIME=OFF …/cmake (注意/cmake前面是两个点) nmake nmake install 编译完毕之后在install文件夹下面有4个文件夹:bin、camke、include、lib 3:编译ncnn (1)在ncnn-master目录下新建一个名为mybuild-vs2015的文件夹 (2)使用VS2015 x64本机工具命令提示符进入到解压目录 (3) cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=%cd%/install -DProtobuf_INCLUDE_DIR=D:/onnx_android_ncnn/protobuf-all-3.7.1-test/protobuf-3.7.1/build-vs2015/install/include -DProtobuf_LIBRARIES=D:/onnx_android_ncnn/protobuf-all-3.7.1-test/protobuf-3.7.1/build-vs2015/install/lib/libprotobuf.lib -DProtobuf_PROTOC_EXECUTABLE=D:/onnx_android_ncnn/protobuf-all-3.7.1-test/protobuf-3.7.1/build-vs2015/install/bin/protoc.exe … (注意最后是两个点,不是三个点) 。 nmake nmake install 4:模型转换: (1) 输入一下代码: import torch import torchvision import torch.onnx import cv2 as cv mean = torch.tensor([0.485, 0.456, 0.406], dtype=torch.float32) std = torch.tensor([0.229, 0.224, 0.225], dtype=torch.float32) model = torchvision.models.resnet18(pretrained=True) x = torch.Tensor(cv.cvtColor(cv.resize(cv.imread(‘11.jpg’),(224,224)),cv.COLOR_BGR2RGB)).float()/255.0 x = (x-mean)/std x = x.contiguous() x = torch.Tensor.unsqueeze(x.permute([2,0,1]),dim = 0) model.eval() with torch.no_grad(): pre = torch.Tensor.argmax(model(x)) torch_out = torch.onnx._export(model, x, “resnet18.onnx”, export_params=True,keep_initializers_as_inputs=True) pre1 = torch.Tensor.argmax(torch_out,1) print(pre,pre1) (注意:keep_initializers_as_inputs=True一定要设置为True,否则在模型简化时,会报错) (2)模型简化 python -m onnxsim resnet18.onnx resnet18-sim.onnx (3)获取ncnn可识别的bin文件和param文件 onnx2ncnn resnet18-sim.onnx resnet18-sim.param resnet18-sim.bin