leetcode 72. Edit Distance

mac2024-05-23  37

1. 状态方程

f ( w o r d 1 [ : i ] , w o r d 2 [ : j ] ) f(word1[:i],word2[:j]) f(word1[:i],word2[:j])表示为:word2[:j]可由word1[:i]最少经过 f ( w o r d 1 [ : i ] , w o r d 2 [ : j ] ) f(word1[:i],word2[:j]) f(word1[:i],word2[:j])次insert、delete和replace操作后得到。则原问题转换成:

求 解 函 数 : f ( w o r d 1 [ : n ] , w o r d 2 [ : m ] ) 求解函数:f(word1[:n],word2[:m]) f(word1[:n],word2[:m])

则:

令 f ( w o r d 1 [ : i ] , w o r d 2 [ : j ] ) 为 S [ i ] [ j ] S [ i ] [ j ] = m i n ( S [ i ] [ j − 1 ] + 1 , S [ i − 1 ] [ j ] + 1 , S [ i − 1 ] [ j − 1 ] + w o r d 1 [ i ] = = w o r d 2 [ j ] ? 0 : 1 ) 令f(word1[:i],word2[:j]) 为S[i][j] \\ S[i][j] = min\Big(S[i][j-1]+1,S[i-1][j]+1,S[i-1][j-1]+word1[i]==word2[j]?0:1\Big) f(word1[:i],word2[:j])S[i][j]S[i][j]=min(S[i][j1]+1,S[i1][j]+1,S[i1][j1]+word1[i]==word2[j]?0:1)

S [ i ] [ j ] S[i][j] S[i][j]表示 w o r d 1 [ : i ] word1[:i] word1[:i]转换成 w o r d 2 [ : j ] word2[:j] word2[:j]的最少次数;当insert时,i<j。因为 w o r d 1 [ : i ] word1[:i] word1[:i]需要 S [ i ] [ j − 1 ] S[i][j-1] S[i][j1]次转换成 w o r d 2 [ : j − 1 ] word2[:j-1] word2[:j1],则 w o r d 1 [ : i ] word1[:i] word1[:i]只需要 S [ i ] [ j − 1 ] + 1 S[i][j-1]+1 S[i][j1]+1(多了次插入)次转换成 w o r d 2 [ : j ] word2[:j] word2[:j];当delete时,说明 w o r d 1 [ : i − 1 ] word1[:i-1] word1[:i1]可以以更少的次数转换成 w o r d 2 [ : j ] word2[:j] word2[:j]。可以直接delete w o r d 1 [ i ] word1[i] word1[i],转换次数为 S [ i − 1 ] [ j ] + 1 S[i-1][j]+1 S[i1][j]+1;当replace时, w o r d 1 [ i ] ! = w o r d 2 [ j ] word1[i]!=word2[j] word1[i]!=word2[j]。转换次数为 S [ i − 1 ] [ j − 1 ] + 1 S[i-1][j-1]+1 S[i1][j1]+1;当 w o r d 1 [ i ] = = w o r d 2 [ j ] word1[i]==word2[j] word1[i]==word2[j]时,则不需要任何操作。转换次数为 S [ i − 1 ] [ j − 1 ] S[i-1][j-1] S[i1][j1]

2. 代码

class Solution { public: int minDistance(string word1, string word2) { vector<vector<int> > s(word2.size()+1,vector<int>(word1.size()+1)); int i,j,ins,del,rep,a,b; for(i=0;i<word2.size()+1;++i){ s[i][0] = i; // word2拿出i个字符,word1需要修改i次,即插入i次 } for(j=0;j<word1.size()+1;++j){ s[0][j] = j; // word2拿出0个字符,word1需要修改j次,即删除j次 } for(a=1;a<word2.size()+1;++a){ for(b=1;b<word1.size()+1;++b){ i = a-1; // word2字符所在位置 j = b-1; // word1字符所在位置 ins = s[a-1][b]+1; del = s[a][b-1]+1; rep = (s[a-1][b-1] + (word2[i]==word1[j]?0:1)); // 不等时需要replace s[a][b] = min(min(ins,del),rep); } } return s[word2.size()][word1.size()]; } };
最新回复(0)