hashMap-putVal()方法分析

mac2024-06-26  47

putVal() 方法解析

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                    boolean evict) {         Node<K,V>[] tab; Node<K,V> p; int n, i;         // 如果存储元素的table为空,则进行必要字段的初始化         if ((tab = table) == null || (n = tab.length) == 0)             n = (tab = resize()).length;    // 获取长度(16)         // 如果根据hash值获取的结点为空,则新建一个结点         if ((p = tab[i = (n - 1) & hash]) == null)      // 此处 & 代替了 % (除法散列法进行散列)             tab[i] = newNode(hash, key, value, null);         // 这里的p结点是根据hash值算出来对应在数组中的元素         else {             Node<K,V> e; K k;             // 如果新插入的结点和table中p结点的hash值,key值相同的话             if (p.hash == hash &&                 ((k = p.key) == key || (key != null && key.equals(k))))                 e = p;             // 如果是红黑树结点的话,进行红黑树插入             else if (p instanceof TreeNode)                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);             else {                 for (int binCount = 0; ; ++binCount) {                     // 代表这个单链表只有一个头部结点,则直接新建一个结点即可                     if ((e = p.next) == null) {                         p.next = newNode(hash, key, value, null);                         // 链表长度大于8时,将链表转红黑树                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                             treeifyBin(tab, hash);                         break;                     }                     if (e.hash == hash &&                         ((k = e.key) == key || (key != null && key.equals(k))))                         break;                     // 及时更新p                     p = e;                 }             }             // 如果存在这个映射就覆盖             if (e != null) { // existing mapping for key                 V oldValue = e.value;                 // 判断是否允许覆盖,并且value是否为空                 if (!onlyIfAbsent || oldValue == null)                     e.value = value;                 afterNodeAccess(e);     // 回调以允许LinkedHashMap后置操作                 return oldValue;             }         }         ++modCount;     // 更改操作次数         if (++size > threshold)     // 大于临界值             // 将数组大小设置为原来的2倍,并将原先的数组中的元素放到新数组中             // 因为有链表,红黑树之类,因此还要调整他们             resize();           // 回调以允许LinkedHashMap后置操作         afterNodeInsertion(evict);         return null;     }

resize()解析:

//初始化或者扩容之后元素调整 final Node<K,V>[] resize() {         // 获取旧元素数组的各种信息         Node<K,V>[] oldTab = table;         // 长度              int oldCap = (oldTab == null) ? 0 : oldTab.length;         // 扩容的临界值         int oldThr = threshold;         // 定义新数组的长度及扩容的临界值         int newCap, newThr = 0;         if (oldCap > 0) {   // 如果原table不为空             // 如果数组长度达到最大值,则修改临界值为Integer.MAX_VALUE             if (oldCap >= MAXIMUM_CAPACITY) {                 threshold = Integer.MAX_VALUE;                 return oldTab;             }             // 下面就是扩容操作(2倍)             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                      oldCap >= DEFAULT_INITIAL_CAPACITY)                 // threshold也变为二倍                 newThr = oldThr << 1;         }         else if (oldThr > 0) // initial capacity was placed in threshold             newCap = oldThr;         else {               // threshold为0,则使用默认值             newCap = DEFAULT_INITIAL_CAPACITY;               newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);         }         if (newThr == 0) {  // 如果临界值还为0,则设置临界值             float ft = (float)newCap * loadFactor;             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                       (int)ft : Integer.MAX_VALUE);         }         threshold = newThr; // 更新填充因子         @SuppressWarnings({"rawtypes","unchecked"})             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];         table = newTab;         if (oldTab != null) {   // 调整数组大小之后,需要调整红黑树或者链表的指向             for (int j = 0; j < oldCap; ++j) {                 Node<K,V> e;                 if ((e = oldTab[j]) != null) {                     oldTab[j] = null;                     if (e.next == null)                         newTab[e.hash & (newCap - 1)] = e;                     else if (e instanceof TreeNode)     // 红黑树调整                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                     else { // preserve order                         // 链表调整                         Node<K,V> loHead = null, loTail = null;                         Node<K,V> hiHead = null, hiTail = null;                         Node<K,V> next;                         do {                             next = e.next;                             if ((e.hash & oldCap) == 0) {                                 if (loTail == null)                                     loHead = e;                                 else                                     loTail.next = e;                                 loTail = e;                             }                             else {                                 if (hiTail == null)                                     hiHead = e;                                 else                                     hiTail.next = e;                                 hiTail = e;                             }                         } while ((e = next) != null);                         if (loTail != null) {                             loTail.next = null;                             newTab[j] = loHead;                         }                         if (hiTail != null) {                             hiTail.next = null;                             newTab[j + oldCap] = hiHead;                         }                     }                 }             }         }         return newTab;     }

putTreeVal()解析:

// 红黑树插入 final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,                                        int h, K k, V v) {             Class<?> kc = null;             boolean searched = false;             TreeNode<K,V> root = (parent != null) ? root() : this;      // 找Root             for (TreeNode<K,V> p = root;;) {                 int dir, ph; K pk;                 if ((ph = p.hash) > h)      // 红黑树中根据hash值、key值找结点                     dir = -1;                 else if (ph < h)                     dir = 1;                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))      // 找到则返回此节点                     return p;                 else if ((kc == null &&                           (kc = comparableClassFor(k)) == null) ||                          (dir = compareComparables(kc, k, pk)) == 0) {                     if (!searched) {                         TreeNode<K,V> q, ch;                         searched = true;                         if (((ch = p.left) != null &&                              (q = ch.find(h, k, kc)) != null) ||                             ((ch = p.right) != null &&                              (q = ch.find(h, k, kc)) != null))                             return q;                     }                     dir = tieBreakOrder(k, pk);                 }                 TreeNode<K,V> xp = p;                 if ((p = (dir <= 0) ? p.left : p.right) == null) {      // 没找到时                     Node<K,V> xpn = xp.next;                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);    // 创建一个结点                     if (dir <= 0)                                       // 比较                         xp.left = x;                     else                         xp.right = x;                     xp.next = x;                                        // 插入                     x.parent = x.prev = xp;                          if (xpn != null)                         ((TreeNode<K,V>)xpn).prev = x;                     moveRootToFront(tab, balanceInsertion(root, x));    // 调整                     return null;                 }             }         }

treeifyBin()解析

// 链表转双向链表操作     final void treeifyBin(Node<K,V>[] tab, int hash) {         int n, index; Node<K,V> e;           // 如果元素总个数小于64,则继续进行扩容,结点指向调节         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)             resize();         // 先找到那个链表的头         else if ((e = tab[index = (n - 1) & hash]) != null) {             TreeNode<K,V> hd = null, tl = null;             do {                 //创建红黑树根结点                 TreeNode<K,V> p = replacementTreeNode(e, null);                 if (tl == null)                     hd = p;                 else {                     p.prev = tl;                     tl.next = p;                 }                 tl = p;             } while ((e = e.next) != null);             if ((tab[index] = hd) != null)                 // 此处才是真正的转为红黑树                 hd.treeify(tab);         }     }

treeify()解析

//将链表中每个值进行红黑树插入操作         final void treeify(Node<K,V>[] tab) {             TreeNode<K,V> root = null;             // TreeNode<K,V> x = this  相当于初始化了一个结点             for (TreeNode<K,V> x = this, next; x != null; x = next) {                 next = (TreeNode<K,V>)x.next;                 // 初始化Root                 x.left = x.right = null;                 if (root == null) {                     x.parent = null;                     x.red = false;                     root = x;                 }                 else {                     K k = x.key;                     int h = x.hash;                     Class<?> kc = null;                     for (TreeNode<K,V> p = root;;) {                         int dir, ph;                         K pk = p.key;                         if ((ph = p.hash) > h)                             dir = -1;                         else if (ph < h)                             dir = 1;                         else if ((kc == null &&                             // comparableClassFor(k) 返回 k 类型的比较器                                   (kc = comparableClassFor(k)) == null) ||                             // compareComparables(kc, k, pk) 返回p,pk比较的结果                                  (dir = compareComparables(kc, k, pk)) == 0)                             // tieBreakOrder(k, pk) 比较两个hash码                             dir = tieBreakOrder(k, pk);                         // 此处进行红黑树操作                         TreeNode<K,V> xp = p;                         if ((p = (dir <= 0) ? p.left : p.right) == null) {                             x.parent = xp;                             if (dir <= 0)                                 xp.left = x;                             else                                 xp.right = x;                             // 平衡调节                             root = balanceInsertion(root, x);                             break;                         }                     }                 }             }             // 确保给定的根是根结点             moveRootToFront(tab, root);         }

balanceInsertion()解析

// 插入后的平衡操作         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,                                                     TreeNode<K,V> x) {             x.red = true;             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {                 // 没有结点时                 if ((xp = x.parent) == null) {                     x.red = false;                     return x;                 }                 // 只有两层的树                 else if (!xp.red || (xpp = xp.parent) == null)                     return root;                 // 左子树插入                 if (xp == (xppl = xpp.left)) {                     if ((xppr = xpp.right) != null && xppr.red) {                         xppr.red = false;                         xp.red = false;                         xpp.red = true;                         x = xpp;                     }                     else {                         if (x == xp.right) {                             root = rotateLeft(root, x = xp);                             xpp = (xp = x.parent) == null ? null : xp.parent;                         }                         if (xp != null) {                             xp.red = false;                             if (xpp != null) {                                 xpp.red = true;                                 root = rotateRight(root, xpp);                             }                         }                     }                 }                 // 右子树插入                 else {                     // 祖父结点不为空,并且颜色为红色时                     if (xppl != null && xppl.red) {                         xppl.red = false;                         xp.red = false;                         xpp.red = true;                         x = xpp;                     }                     else {                         // 左子树插入                         if (x == xp.left) {                             root = rotateRight(root, x = xp);                             xpp = (xp = x.parent) == null ? null : xp.parent;                         }                         if (xp != null) {                             // x 的父亲结点设置成黑色                             xp.red = false;                             if (xpp != null) {                                 // x的祖父结点设置成红色                                 xpp.red = true;                                 // 左旋                                 root = rotateLeft(root, xpp);                             }                         }                     }                 }             }         }

rotateLeft()解析 配图:

// 红黑树的左旋操作        

 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,                                               TreeNode<K,V> p) {             // r(right)   指的是调整点的右子树根结点             // pp(parentparent)  是p的祖父结点             // rl(rigthleft)  是p的叔父结点             TreeNode<K,V> r, pp, rl;                     if (p != null && (r = p.right) != null) {                 if ((rl = p.right = r.left) != null)                     rl.parent = p;                 if ((pp = r.parent = p.parent) == null)                     (root = r).red = false;                 else if (pp.left == p)                     pp.left = r;                 else                     pp.right = r;                 r.left = p;                 p.parent = r;             }             return root;         }

 

最新回复(0)