PTA数据结构-06-图1 列出连通集

mac2024-07-11  50

一、题目

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v​1​​ v​2​​ ... v​k​​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6 0 7 0 1 2 0 4 1 2 4 3 5

输出样例:

{ 0 1 4 2 7 } { 3 5 } { 6 } { 0 1 2 7 4 } { 3 5 } { 6 }

 

二、解答

import java.util.*; public class Main{ static ArrayList<Integer> stack = new ArrayList<>(); static int index = -1; static ArrayList<Integer> queue = new ArrayList<>(); static int front = -1, rear = -1; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int[][] map = creatMap(sc); printAllRes(map); } public static void printAllRes(int[][] map){ int nodeNum = map.length; int[] visited = new int[nodeNum]; for (int i = 0; i < nodeNum; i++) { if (visited[i] == 0) System.out.println(DFS(i, visited, map)); } visited = new int[nodeNum]; for (int i = 0; i < nodeNum; i++) { if (visited[i] == 0) System.out.println(BFS(i, visited, map)); } } public static String DFS(int node, int[] visited, int[][] map){ String res = ""; int nodeNum = map.length; while(node != -1) { //某个点可能与多个点相邻,被多次压入堆栈 if(visited[node] == 1) { node = pop(); continue;} //从小到大输出,因此避免倒序 for (int i = nodeNum - 1; i >= 0; i--) { if (map[node][i] != 0 && visited[i] == 0) push(i); } visited[node] = 1; res += node + " "; node = pop(); } return "{ " + res.trim() + " }"; } public static String BFS(int node, int[] visited, int[][] map){ String res = ""; int nodeNum = map.length; while(node != -1) { //某个点可能与多个点相邻,被多次压入堆栈 if(visited[node] == 1) { node = outQue(); continue;} for (int i = 0; i < nodeNum; i++) { if (map[node][i] != 0 && visited[i] == 0) inQue(i); } visited[node] = 1; res += node + " "; node = outQue(); } return "{ " + res.trim() + " }"; } public static int[][] creatMap(Scanner sc){ int nodeNum = sc.nextInt(); int lineNum = sc.nextInt(); int [][] map = new int[nodeNum][nodeNum]; for (int i = 0; i < lineNum; i++) { int node1 = sc.nextInt(); int node2 = sc.nextInt(); map[node1][node2] = 1; map[node2][node1] = 1; } return map; } public static void push(int num){ stack.add(num); index++; } public static int pop(){ if (index < 0) return -1; return stack.remove(index--); } public static void inQue(int num){ queue.add(num); front++; } public static int outQue(){ if (rear >= front) return -1; return queue.get(++rear); } }

思路:

考虑图的保存和遍历:二维数组DFS:深度遍历过程,将邻近点压入堆栈BFS:宽度遍历过程,将邻近点压入队列某个点可能与多个点相邻,被多次压入堆栈,只处理一次

思考:

很多时候递归可以用堆栈来解决,比如DFS尾递归可以用while循环来解决
最新回复(0)