耐克 阿迪达斯 欧洲杯 球衣 西班牙 赞助费
格式要求:list of list形式,分词好的的整个语料
from gensim import corpora, models, similarities #语料库,模型,相似性 import gensim #做映射,相当于词袋 dictionary = corpora.Dictionary(contents_clean) corpus = [dictionary.doc2bow(sentence) for sentence in contents_clean] lda = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=20) print(lda.print_topic(1, topn=5)) Out: 0.009*"男人" + 0.007*"女人" + 0.007*"中" + 0.007*"说" + 0.004*"学生" for topic in lda.print_topics(num_topics=20, num_words=5): print(topic[1])……
df_train = pd.DataFrame({'contents_clean':contents_clean, 'label':df_news['category']}) df_train.label.unique() # array(['汽车', '财经', '科技', '健康', '体育', '教育', '文化', '军事', '娱乐', '时尚'], dtype=object) label_mapping = {'汽车':1,'财经':2,'科技':3,'健康':4,'体育':5,'教育':6,'文化':7,'军事':8,'娱乐':9,'时尚':0} df_train['label'] = df_train['label'].map(label_mapping) from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(df_train['contents_clean'].values,df_train['label'].values, random_state=0) # print(x_train[0][1]) words = [] for line_index in range(len(x_train)): try: words.append(' '.join(x_train[line_index])) except: print(line_index,word_index) # words[0] # 文本特征提取-特征数值计算(TF) from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(analyzer='word', max_features=4000, lowercase=False) cv.fit(words) from sklearn.naive_bayes import MultinomialNB # 朴素贝叶斯分类器 classifier = MultinomialNB() classifier.fit(cv.transform(words), y_train) test_words = [] for line_index in range(len(x_test)): try: test_words.append(' '.join(x_test[line_index])) except: print(line_index, word_index) # test_words[0] classifier.score(cv.transform(test_words),y_test)0.8032
# 文本特征提取-(TF-IDF) from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(analyzer='word', max_features=4000, lowercase=False) vectorizer.fit(words) classifier = MultinomialNB() classifier.fit(vectorizer.transform(words), y_train) classifier.score(vectorizer.transform(test_words),y_test)0.8128