VGGNet 实现

mac2024-11-02  14

import tensorflow as tf from datetime import datetime import math import time batch_size = 12 num_batches = 100 def myprint(conv): # print(conv.op.name, ' ', conv.get_shape().as_list()) str1 = str(conv.op.name) + ' ' + str(conv.get_shape().as_list()) + "\n" f = open('test.txt', 'a') # 若是'wb'就表示写二进制文件 f.write(str1) f.close() def conv_op(input, name, kernel_h, kernel_w, num_out, step_h, step_w, para): # 获取输入图像的通道 init = tf.contrib.layers.xavier_initializer_conv2d() num_in = input.get_shape()[-1].value with tf.name_scope(name) as scope: kernel = tf.get_variable(scope + "w" , shape=[kernel_h, kernel_w, num_in, num_out], dtype=tf.float32, initializer=init) conv = tf.nn.conv2d(input, kernel, (1, step_h, step_w,1),padding="SAME") biases = tf.Variable(tf.constant(0.0, shape=[num_out], dtype=tf.float32), trainable=True, name="b") avtivation = tf.nn.relu(tf.nn.bias_add(conv, biases), name = scope) para += [kernel, biases] return avtivation def fc_op(input, name, num_out, para): init = tf.contrib.layers.xavier_initializer_conv2d() num_in = input.get_shape()[-1].value with tf.name_scope(name) as scope: weights = tf.get_variable(scope + "w", shape=[num_in, num_out], dtype= tf.float32, initializer=init) biases = tf.Variable(tf.constant(0.1, shape=[num_out], dtype=tf.float32), name="b") avtivation = tf.nn.relu_layer(input, weights, biases) para += [weights, biases] return avtivation # 图像的数据输入是224 * 224 * 3 def inference_op(input, keep_prob): parameters = [] # 第一段卷积, 输出的大小是112 * 112 * 64 conv1_1 = conv_op(input, name="conv1_1", kernel_h=3, kernel_w=3, num_out=4, step_h=1, step_w=1, para=parameters) myprint(conv1_1) conv1_2 = conv_op(conv1_1, name="conv1_2", kernel_h=3, kernel_w=3, num_out=64, step_h=1, step_w=1, para=parameters) myprint(conv1_2) pool1 = tf.nn.max_pool(conv1_2, ksize=[1,2,2,1], strides=[1,2,2,1], padding="SAME", name="pool1") myprint(pool1) # 第二段卷积,输出的大小是56*56*128 conv2_1 = conv_op(pool1, name = "conv2_1", kernel_h=3, kernel_w=3, num_out=128,step_h=1, step_w=1, para=parameters) myprint(conv2_1) conv2_2 = conv_op(conv2_1, name = "conv2_2", kernel_h=3, kernel_w=3, num_out=128,step_h=1, step_w=1, para=parameters) myprint(conv2_2) pool2 = tf.nn.max_pool(conv2_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", name="pool2") myprint(pool2) # 第三段卷积, 输出的大小是28*28*256 conv3_1 = conv_op(pool2, name="conv3_1", kernel_h=3, kernel_w=3, num_out=256, step_h=1, step_w=1, para=parameters) myprint(conv3_1) conv3_2 = conv_op(conv3_1, name="conv3_2", kernel_h=3, kernel_w=3, num_out=256, step_h=1, step_w=1, para=parameters) myprint(conv3_2) conv3_3 = conv_op(conv3_2, name="conv3_3", kernel_h=3, kernel_w=3, num_out=256, step_h=1, step_w=1, para=parameters) myprint(conv3_3) pool3 = tf.nn.max_pool(conv3_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", name="pool3") myprint(pool3) # 第四段卷积, 输出的大小是14*14*512 conv4_1 = conv_op(pool3, name="conv4_1", kernel_h=3, kernel_w=3, num_out=512, step_h=1, step_w=1, para=parameters) myprint(conv4_1) conv4_2 = conv_op(conv4_1, name="conv4_2", kernel_h=3, kernel_w=3, num_out=512, step_h=1, step_w=1, para=parameters) myprint(conv4_2) conv4_3 = conv_op(conv4_2, name="conv4_3", kernel_h=3, kernel_w=3, num_out=512, step_h=1, step_w=1, para=parameters) myprint(conv4_3) pool4 = tf.nn.max_pool(conv4_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", name="pool4") myprint(pool4) # 第五段卷积, 输出的大小是7*7*512 conv5_1 = conv_op(pool4, name="conv5_1", kernel_h=3, kernel_w=3, num_out=512, step_h=1, step_w=1, para=parameters) myprint(conv5_1) conv5_2 = conv_op(conv5_1, name="conv5_2", kernel_h=3, kernel_w=3, num_out=512, step_h=1, step_w=1, para=parameters) myprint(conv5_2) conv5_3 = conv_op(conv5_2, name="conv5_3", kernel_h=3, kernel_w=3, num_out=512, step_h=1, step_w=1, para=parameters) myprint(conv5_3) pool5 = tf.nn.max_pool(conv5_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME", name="pool5") myprint(pool5) pool_shape = pool5.get_shape().as_list() flattened_shape = pool_shape[1]*pool_shape[2]*pool_shape[3] reshaped = tf.reshape(pool5, [-1, flattened_shape], name="reshped") myprint(reshaped) # 创建第一个全连层 fc_6 = fc_op(reshaped, name="fc6", num_out=4096, para=parameters) fc_6_drop = tf.nn.dropout(fc_6, keep_prob, name="fc_6_drop") myprint(fc_6_drop) # 创建第二个全连层 fc_7 = fc_op(fc_6_drop, name="fc7", num_out=4096, para=parameters) fc_7_drop = tf.nn.dropout(fc_7, keep_prob, name="fc_7_drop") myprint(fc_7_drop) # 创建第三个全连层 fc_8 = fc_op(fc_7_drop, name="fc8", num_out=1000, para=parameters) softmax = tf.nn.softmax(fc_8) myprint(fc_8) myprint(softmax) # 得到结果 predictions = tf.argmax(softmax, 1) return predictions, softmax, fc_8, parameters with tf.Graph().as_default(): image_size = 224 images = tf.Variable(tf.random_normal([batch_size, image_size, image_size, 3], dtype=tf.float32, stddev=1e-1)) keep_prob = tf.placeholder(tf.float32) predictions, softmax, fc_8, parameters = inference_op(images, keep_prob) init_op = tf.global_variables_initializer() # 使用BFC算法确定GPU内存最佳分配策略 config = tf.ConfigProto() config.gpu_options.allocator_type = "BFC" with tf.Session(config=config) as sess: sess.run(init_op) num_steps_burn_in = 10 total_dura = 0.0 total_dura_squared = 0.0 back_total_dura = 0.0 back_total_dura_squared = 0.0 for i in range(num_batches + num_steps_burn_in): start_time = time.time() _ = sess.run(predictions, feed_dict={keep_prob: 1.0}) duration = time.time() - start_time if i >= num_steps_burn_in: if i % 10 == 0: print("%s: step %d, duration = %.3f" % (datetime.now(), i - num_steps_burn_in, duration)) total_dura += duration total_dura_squared += duration * duration average_time = total_dura / num_batches print("%s: Forward across %d steps, %.3f +/- %.3f sec / batch" % (datetime.now(), num_batches, average_time, math.sqrt(total_dura_squared / num_batches - average_time * average_time))) # 定义求解梯度的操作 grad = tf.gradients(tf.nn.l2_loss(fc_8), parameters) # 运行反向传播测试过程 for i in range(num_batches + num_steps_burn_in): start_time = time.time() _ = sess.run(grad, feed_dict={keep_prob: 0.5}) duration = time.time() - start_time if i >= num_steps_burn_in: if i % 10 == 0: print("%s: step %d, duration = %.3f" % (datetime.now(), i - num_steps_burn_in, duration)) back_total_dura += duration back_total_dura_squared += duration * duration back_avg_t = back_total_dura / num_batches # 打印反向传播的运算时间信息 print("%s: Forward-backward across %d steps, %.3f +/- %.3f sec / batch" % (datetime.now(), num_batches, back_avg_t, math.sqrt(back_total_dura_squared / num_batches - back_avg_t * back_avg_t)))

 

最新回复(0)