自动驾驶论文: DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and RFB

mac2024-12-05  23

环视车位检测和车道线分割 DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block PDF: https://arxiv.org/pdf/1806.07226.pdf PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述:

DFNet主要划分为三块: 基本模块(basic module)、特征提取模块(features extraction module)、细化模块(refinement module).

1 选择Densenet作为基本模块(basic module);2 特征提取模块(features extraction module)由PSPNet提出的金字塔池模块(pyramid pooling module)后接卷积层和一个双线性上采样层组成.3 细化模块(refinement module)使用卷积层和池化层组成的残差融合块(residual fusion block, RFB) 减轻上采样带来的噪声干扰以及辨别处于类别边界上的点的归属.

2 网络结构

3 创新点

a 根据每个batch中的样本动态计算样本权重,权重计算公式如下: 其中, w i w_{i} wi是类别 w w w的权重, c c c 是类别数, i   ( 0 , c ) i~(0,c) i (0,c), α α α β β β 分别是 w i w_{i} wi的上下界阈值,避免权重差异过大, N N N 是batch中的全部像素数, n i n_{i} ni 是类别 i i i的像素数,

when n i n_{i} ni = 0, it means that the class i does not appear in this batch, we set the weight to 1. Because we need to increase the effect of small pixel number class on loss, so the smaller the n i n_{i} ni , the larger the wi is. N and c are constant, wi is just changed by n i n_{i} ni . When the n i n_{i} ni is the average number, w i w_{i} wi is calculated to be 1/2, the multiplicative coefficient of 1/2 is also used to decrease the w i w_{i} wi of large pixel number of class.

b RFB中使用的结构(由卷积层和池化层组成), 实验表明结构(f)性能最好

4 实验效果展示

最新回复(0)