环视车位检测和车道线分割 DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block PDF: https://arxiv.org/pdf/1806.07226.pdf PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks
DFNet主要划分为三块: 基本模块(basic module)、特征提取模块(features extraction module)、细化模块(refinement module).
1 选择Densenet作为基本模块(basic module);2 特征提取模块(features extraction module)由PSPNet提出的金字塔池模块(pyramid pooling module)后接卷积层和一个双线性上采样层组成.3 细化模块(refinement module)使用卷积层和池化层组成的残差融合块(residual fusion block, RFB) 减轻上采样带来的噪声干扰以及辨别处于类别边界上的点的归属.when n i n_{i} ni = 0, it means that the class i does not appear in this batch, we set the weight to 1. Because we need to increase the effect of small pixel number class on loss, so the smaller the n i n_{i} ni , the larger the wi is. N and c are constant, wi is just changed by n i n_{i} ni . When the n i n_{i} ni is the average number, w i w_{i} wi is calculated to be 1/2, the multiplicative coefficient of 1/2 is also used to decrease the w i w_{i} wi of large pixel number of class.
b RFB中使用的结构(由卷积层和池化层组成), 实验表明结构(f)性能最好