HashMap详解

mac2024-12-23  24

转自

https://www.jianshu.com/p/ee0de4c99f87

 

本文准备从以下几个方面去讲解HashMap: 1)HashMap源码详细分析 2)HashMap为什么是线程不安全的? 3)HashMap和HashTable的区别 4)1.7和1.8的HashMap实现区别总结

 

HashMap源码分析

一、构造函数

让我们先从构造函数说起,HashMap有四个构造方法,别慌

1.1 HashMap()

// 1.无参构造方法、 // 构造一个空的HashMap,初始容量为16,负载因子为0.75 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted }

1.2 HashMap(int initialCapacity)

// 2.构造一个初始容量为initialCapacity,负载因子为0.75的空的HashMap, public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); }

1.3 HashMap(int initialCapacity, float loadFactor)

// 3.构造一个空的初始容量为initialCapacity,负载因子为loadFactor的HashMap public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } //最大容量 //static final int MAXIMUM_CAPACITY = 1 << 30;

tableSizeFor()的主要功能是返回一个比给定整数大且最接近的2的幂次方整数,如给定10,返回2的4次方16.

1.4 HashMap(Map<? extends K, ? extends V> m)

// 4. 构造一个和指定Map有相同mappings的HashMap,初始容量能充足的容下指定的Map,负载因子为0.75 public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } /** * 将m的所有元素存入本HashMap实例中 */ final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { //得到 m 中元素的个数 int s = m.size(); //当 m 中有元素时,则需将map中元素放入本HashMap实例。 if (s > 0) { // 判断table是否已经初始化,如果未初始化,则先初始化一些变量。(table初始化是在put时) if (table == null) { // pre-size // 根据待插入的map 的 size 计算要创建的 HashMap 的容量。 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // 把要创建的 HashMap 的容量存在 threshold 中 if (t > threshold) threshold = tableSizeFor(t); } // 如果table初始化过,因为别的函数也会调用它,所以有可能HashMap已经被初始化过了。 // 判断待插入的 map 的 size,若 size 大于 threshold,则先进行 resize(),进行扩容 else if (s > threshold) resize(); //然后就开始遍历 带插入的 map ,将每一个 <Key ,Value> 插入到本HashMap实例。 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); // put(K,V)也是调用 putVal 函数进行元素的插入 putVal(hash(key), key, value, false, evict); } } }

介绍putVal方法前,说一下HashMap的几个重要的成员变量:

/** * The table, initialized on first use, and resized as * necessary. When allocated, length is always a power of two. * (We also tolerate length zero in some operations to allow * bootstrapping mechanics that are currently not needed.) */ //实际存储key,value的数组,只不过key,value被封装成Node了 transient Node<K,V>[] table; /** * The number of key-value mappings contained in this map. */ transient int size; /** * The number of times this HashMap has been structurally modified * Structural modifications are those that change the number of mappings in * the HashMap or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the HashMap fail-fast. (See ConcurrentModificationException). */ transient int modCount; /** * The next size value at which to resize (capacity * load factor). * * @serial */ // (The javadoc description is true upon serialization. // Additionally, if the table array has not been allocated, this // field holds the initial array capacity, or zero signifying // DEFAULT_INITIAL_CAPACITY.) //因为 tableSizeFor(int) 返回值给了threshold int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor;

 

 

其实就是哈希表。HashMap使用链表法避免哈希冲突(相同hash值),当链表长度大于TREEIFY_THRESHOLD(默认为8)时,将链表转换为红黑树,当然小于UNTREEIFY_THRESHOLD(默认为6)时,又会转回链表以达到性能均衡。 我们看一张HashMap的数据结构(数组+链表+红黑树 )就更能理解table了:

再回到putMapEntries函数中,如果table为null,那么这时就设置合适的threshold,如果不为空并且指定的map的size>threshold,那么就resize()。然后把指定的map的所有Key,Value,通过putVal添加到我们创建的新的map中。

putVal中传入了个hash(key),那我们就先来看看hash(key):

/** * key 的 hash值的计算是通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16) * 主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候 * 也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销 */ static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }

异或运算:(h = key.hashCode()) ^ (h >>> 16)

原 来 的 hashCode : 1111 1111 1111 1111 0100 1100 0000 1010 移位后的hashCode: 0000 0000 0000 0000 1111 1111 1111 1111 进行异或运算 结果:1111 1111 1111 1111 1011 0011 1111 0101

这样做的好处是,可以将hashcode高位和低位的值进行混合做异或运算,而且混合后,低位的信息中加入了高位的信息,这样高位的信息被变相的保留了下来。掺杂的元素多了,那么生成的hash值的随机性会增大。

刚才我们漏掉了resize()和putVal() 两个函数,现在我们按顺序分析一波:

首先resize() ,先看一下哪些函数调用了resize(),从而在整体上有个概念:

刚才我们漏掉了resize()和putVal() 两个函数,现在我们按顺序分析一波:

首先resize() ,先看一下哪些函数调用了resize(),从而在整体上有个概念:

调用了resize的函数.png

 

final Node<K,V>[] resize() { // 保存当前table Node<K,V>[] oldTab = table; // 保存当前table的容量 int oldCap = (oldTab == null) ? 0 : oldTab.length; // 保存当前阈值 int oldThr = threshold; // 初始化新的table容量和阈值 int newCap, newThr = 0; /* 1. resize()函数在size > threshold时被调用。oldCap大于 0 代表原来的 table 表非空, oldCap 为原表的大小,oldThr(threshold) 为 oldCap × load_factor */ if (oldCap > 0) { // 若旧table容量已超过最大容量,更新阈值为Integer.MAX_VALUE(最大整形值),这样以后就不会自动扩容了。 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } // 容量翻倍,使用左移,效率更高 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) // 阈值翻倍 newThr = oldThr << 1; // double threshold } /* 2. resize()函数在table为空被调用。oldCap 小于等于 0 且 oldThr 大于0,代表用户创建了一个 HashMap,但是使用的构造函数为 HashMap(int initialCapacity, float loadFactor) 或 HashMap(int initialCapacity) 或 HashMap(Map<? extends K, ? extends V> m),导致 oldTab 为 null,oldCap 为0, oldThr 为用户指定的 HashMap的初始容量。   */ else if (oldThr > 0) // initial capacity was placed in threshold //当table没初始化时,threshold持有初始容量。还记得threshold = tableSizeFor(t)么; newCap = oldThr; /* 3. resize()函数在table为空被调用。oldCap 小于等于 0 且 oldThr 等于0,用户调用 HashMap()构造函数创建的 HashMap,所有值均采用默认值,oldTab(Table)表为空,oldCap为0,oldThr等于0, */ else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 新阈值为0 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) // 初始化table Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { // 把 oldTab 中的节点 reHash 到 newTab 中去 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; // 若节点是单个节点,直接在 newTab 中进行重定位 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; // 若节点是 TreeNode 节点,要进行 红黑树的 rehash 操作 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); // 若是链表,进行链表的 rehash 操作 else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; // 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割(代码后有图解,可以回过头再来看),分成两个不同的链表,完成rehash do { next = e.next; // 根据算法 e.hash & oldCap 判断节点位置rehash 后是否发生改变 //最高位==0,这是索引不变的链表。 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } //最高位==1 (这是索引发生改变的链表) else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { // 原bucket位置的尾指针不为空(即还有node) loTail.next = null; // 链表最后得有个null newTab[j] = loHead; // 链表头指针放在新桶的相同下标(j)处 } if (hiTail != null) { hiTail.next = null; // rehash 后节点新的位置一定为原来基础上加上 oldCap,具体解释看下图 newTab[j + oldCap] = hiHead; } } } } } return newTab; } }

什么时候扩容:通过HashMap源码可以看到是在put操作时,即向容器中添加元素时,判断当前容器中元素的个数是否达到阈值(当前数组长度乘以加载因子的值)的时候,就要自动扩容了。

扩容(resize):其实就是重新计算容量;而这个扩容是计算出所需容器的大小之后重新定义一个新的容器,将原来容器中的元素放入其中。

resize()告一段落,接下来看 putVal() 。

//实现put和相关方法。 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //如果table为空或者长度为0,则resize() if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //确定插入table的位置,算法是(n - 1) & hash,在n为2的幂时,相当于取摸操作。 找到key值对应的槽并且是第一个,直接加入 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); //在table的i位置发生碰撞,有两种情况,1、key值是一样的,替换value值, //2、key值不一样的有两种处理方式:2.1、存储在i位置的链表;2.2、存储在红黑树中 else { Node<K,V> e; K k; //第一个node的hash值即为要加入元素的hash if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //2.2 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //2.1 else { //不是TreeNode,即为链表,遍历链表 for (int binCount = 0; ; ++binCount) { ///链表的尾端也没有找到key值相同的节点,则生成一个新的Node, //并且判断链表的节点个数是不是到达转换成红黑树的上界达到,则转换成红黑树。 if ((e = p.next) == null) { // 创建链表节点并插入尾部 p.next = newNode(hash, key, value, null); 超过了链表的设置长度8就转换成红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //如果e不为空就替换旧的oldValue值 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; } //实现put和相关方法。 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //如果table为空或者长度为0,则resize() if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //确定插入table的位置,算法是(n - 1) & hash,在n为2的幂时,相当于取摸操作。 找到key值对应的槽并且是第一个,直接加入 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); //在table的i位置发生碰撞,有两种情况,1、key值是一样的,替换value值, //2、key值不一样的有两种处理方式:2.1、存储在i位置的链表;2.2、存储在红黑树中 else { Node<K,V> e; K k; //第一个node的hash值即为要加入元素的hash if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //2.2 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //2.1 else { //不是TreeNode,即为链表,遍历链表 for (int binCount = 0; ; ++binCount) { ///链表的尾端也没有找到key值相同的节点,则生成一个新的Node, //并且判断链表的节点个数是不是到达转换成红黑树的上界达到,则转换成红黑树。 if ((e = p.next) == null) { // 创建链表节点并插入尾部 p.next = newNode(hash, key, value, null); 超过了链表的设置长度8就转换成红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } //如果e不为空就替换旧的oldValue值 if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }

 

1.7和1.8的HashMap的不同点

(1)JDK1.7用的是头插法,而JDK1.8及之后使用的都是尾插法,那么为什么要这样做呢?因为JDK1.7是用单链表进行的纵向延伸,当采用头插法就是能够提高插入的效率,但是也会容易出现逆序且环形链表死循环问题。但是在JDK1.8之后是因为加入了红黑树使用尾插法,能够避免出现逆序且链表死循环的问题。

(2)扩容后数据存储位置的计算方式也不一样:

在JDK1.7的时候是直接用hash值和需要扩容的二进制数进行&(这里就是为什么扩容的时候为啥一定必须是2的多少次幂的原因所在,因为如果只有2的n次幂的情况时最后一位二进制数才一定是1,这样能最大程度减少hash碰撞)(hash值 & length-1) 。而在JDK1.8的时候直接用了JDK1.7的时候计算的规律,也就是扩容前的原始位置+扩容的大小值=JDK1.8的计算方式,而不再是JDK1.7的那种异或的方法。但是这种方式就相当于只需要判断Hash值的新增参与运算的位是0还是1就直接迅速计算出了扩容后的储存方式。

(3)JDK1.7的时候使用的是数组+ 单链表的数据结构。但是在JDK1.8及之后时,使用的是数组+链表+红黑树的数据结构(当链表的深度达到8的时候,也就是默认阈值,就会自动扩容把链表转成红黑树的数据结构来把时间复杂度从O(N)变成O(logN)提高了效率)。

HashMap为什么是线程不安全的?

HashMap 在并发时可能出现的问题主要是两方面:

put的时候导致的多线程数据不一致 比如有两个线程A和B,首先A希望插入一个key-value对到HashMap中,首先计算记录所要落到的 hash桶的索引坐标,然后获取到该桶里面的链表头结点,此时线程A的时间片用完了,而此时线程B被调度得以执行,和线程A一样执行,只不过线程B成功将记录插到了桶里面,假设线程A插入的记录计算出来的 hash桶索引和线程B要插入的记录计算出来的 hash桶索引是一样的,那么当线程B成功插入之后,线程A再次被调度运行时,它依然持有过期的链表头但是它对此一无所知,以至于它认为它应该这样做,如此一来就覆盖了线程B插入的记录,这样线程B插入的记录就凭空消失了,造成了数据不一致的行为。resize而引起死循环 这种情况发生在HashMap自动扩容时,当2个线程同时检测到元素个数超过 数组大小 × 负载因子。此时2个线程会在put()方法中调用了resize(),两个线程同时修改一个链表结构会产生一个循环链表(JDK1.7中,会出现resize前后元素顺序倒置的情况)。接下来再想通过get()获取某一个元素,就会出现死循环。

HashMap和HashTable的区别

HashMap和Hashtable都实现了Map接口,但决定用哪一个之前先要弄清楚它们之间的分别。主要的区别有:线程安全性,同步(synchronization),以及速度。

HashMap几乎可以等价于Hashtable,除了HashMap是非synchronized的,并可以接受null(HashMap可以接受为null的键值(key)和值(value),而Hashtable则不行)。HashMap是非synchronized,而Hashtable是synchronized,这意味着Hashtable是线程安全的,多个线程可以共享一个Hashtable;而如果没有正确的同步的话,多个线程是不能共享HashMap的。Java 5提供了ConcurrentHashMap,它是HashTable的替代,比HashTable的扩展性更好。另一个区别是HashMap的迭代器(Iterator)是fail-fast迭代器,而Hashtable的enumerator迭代器不是fail-fast的。所以当有其它线程改变了HashMap的结构(增加或者移除元素),将会抛出ConcurrentModificationException,但迭代器本身的remove()方法移除元素则不会抛出ConcurrentModificationException异常。但这并不是一个一定发生的行为,要看JVM。这条同样也是Enumeration和Iterator的区别。由于Hashtable是线程安全的也是synchronized,所以在单线程环境下它比HashMap要慢。如果你不需要同步,只需要单一线程,那么使用HashMap性能要好过Hashtable。HashMap不能保证随着时间的推移Map中的元素次序是不变的。

 

最新回复(0)