k-means++代码示例

mac2024-12-25  25

文章目录

模拟解决问题代码全部样本数据Mall_Customers.csv:运行结果:

模拟解决问题

利用K-Means++对会员用户进行分类,例如工资高又舍得花钱的人,工资高但不舍得花钱的人

代码

# K-Means Clustering # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Mall_Customers.csv') X = dataset.iloc[:, [3, 4]].values # y = dataset.iloc[:, 3].values # Splitting the dataset into the Training set and Test set """from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)""" # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) sc_y = StandardScaler() y_train = sc_y.fit_transform(y_train)""" # Using the elbow method to find the optimal number of clusters from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) kmeans.fit(X) wcss.append(kmeans.inertia_) plt.plot(range(1, 11), wcss) plt.title('The Elbow Method') plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.show() # Fitting K-Means to the dataset # K-means本身不能解决 Random Initialization Trap,但是K-means++使用wcss算法用n_init参数能解决 kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42) y_kmeans = kmeans.fit_predict(X) # Visualising the clusters plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Normal') plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Potential') plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Sensitive') plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Superior') plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Target') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids') plt.title('Clusters of customers') plt.xlabel('Annual Income (k$)') plt.ylabel('Spending Score (1-100)') plt.legend() plt.show()

全部样本数据Mall_Customers.csv:

CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100) 0001,Male,19,15,39 0002,Male,21,15,81 0003,Female,20,16,6 0004,Female,23,16,77 0005,Female,31,17,40 0006,Female,22,17,76 0007,Female,35,18,6 0008,Female,23,18,94 0009,Male,64,19,3 0010,Female,30,19,72 0011,Male,67,19,14 0012,Female,35,19,99 0013,Female,58,20,15 0014,Female,24,20,77 0015,Male,37,20,13 0016,Male,22,20,79 0017,Female,35,21,35 0018,Male,20,21,66 0019,Male,52,23,29 0020,Female,35,23,98 0021,Male,35,24,35 0022,Male,25,24,73 0023,Female,46,25,5 0024,Male,31,25,73 0025,Female,54,28,14 0026,Male,29,28,82 0027,Female,45,28,32 0028,Male,35,28,61 0029,Female,40,29,31 0030,Female,23,29,87 0031,Male,60,30,4 0032,Female,21,30,73 0033,Male,53,33,4 0034,Male,18,33,92 0035,Female,49,33,14 0036,Female,21,33,81 0037,Female,42,34,17 0038,Female,30,34,73 0039,Female,36,37,26 0040,Female,20,37,75 0041,Female,65,38,35 0042,Male,24,38,92 0043,Male,48,39,36 0044,Female,31,39,61 0045,Female,49,39,28 0046,Female,24,39,65 0047,Female,50,40,55 0048,Female,27,40,47 0049,Female,29,40,42 0050,Female,31,40,42 0051,Female,49,42,52 0052,Male,33,42,60 0053,Female,31,43,54 0054,Male,59,43,60 0055,Female,50,43,45 0056,Male,47,43,41 0057,Female,51,44,50 0058,Male,69,44,46 0059,Female,27,46,51 0060,Male,53,46,46 0061,Male,70,46,56 0062,Male,19,46,55 0063,Female,67,47,52 0064,Female,54,47,59 0065,Male,63,48,51 0066,Male,18,48,59 0067,Female,43,48,50 0068,Female,68,48,48 0069,Male,19,48,59 0070,Female,32,48,47 0071,Male,70,49,55 0072,Female,47,49,42 0073,Female,60,50,49 0074,Female,60,50,56 0075,Male,59,54,47 0076,Male,26,54,54 0077,Female,45,54,53 0078,Male,40,54,48 0079,Female,23,54,52 0080,Female,49,54,42 0081,Male,57,54,51 0082,Male,38,54,55 0083,Male,67,54,41 0084,Female,46,54,44 0085,Female,21,54,57 0086,Male,48,54,46 0087,Female,55,57,58 0088,Female,22,57,55 0089,Female,34,58,60 0090,Female,50,58,46 0091,Female,68,59,55 0092,Male,18,59,41 0093,Male,48,60,49 0094,Female,40,60,40 0095,Female,32,60,42 0096,Male,24,60,52 0097,Female,47,60,47 0098,Female,27,60,50 0099,Male,48,61,42 0100,Male,20,61,49 0101,Female,23,62,41 0102,Female,49,62,48 0103,Male,67,62,59 0104,Male,26,62,55 0105,Male,49,62,56 0106,Female,21,62,42 0107,Female,66,63,50 0108,Male,54,63,46 0109,Male,68,63,43 0110,Male,66,63,48 0111,Male,65,63,52 0112,Female,19,63,54 0113,Female,38,64,42 0114,Male,19,64,46 0115,Female,18,65,48 0116,Female,19,65,50 0117,Female,63,65,43 0118,Female,49,65,59 0119,Female,51,67,43 0120,Female,50,67,57 0121,Male,27,67,56 0122,Female,38,67,40 0123,Female,40,69,58 0124,Male,39,69,91 0125,Female,23,70,29 0126,Female,31,70,77 0127,Male,43,71,35 0128,Male,40,71,95 0129,Male,59,71,11 0130,Male,38,71,75 0131,Male,47,71,9 0132,Male,39,71,75 0133,Female,25,72,34 0134,Female,31,72,71 0135,Male,20,73,5 0136,Female,29,73,88 0137,Female,44,73,7 0138,Male,32,73,73 0139,Male,19,74,10 0140,Female,35,74,72 0141,Female,57,75,5 0142,Male,32,75,93 0143,Female,28,76,40 0144,Female,32,76,87 0145,Male,25,77,12 0146,Male,28,77,97 0147,Male,48,77,36 0148,Female,32,77,74 0149,Female,34,78,22 0150,Male,34,78,90 0151,Male,43,78,17 0152,Male,39,78,88 0153,Female,44,78,20 0154,Female,38,78,76 0155,Female,47,78,16 0156,Female,27,78,89 0157,Male,37,78,1 0158,Female,30,78,78 0159,Male,34,78,1 0160,Female,30,78,73 0161,Female,56,79,35 0162,Female,29,79,83 0163,Male,19,81,5 0164,Female,31,81,93 0165,Male,50,85,26 0166,Female,36,85,75 0167,Male,42,86,20 0168,Female,33,86,95 0169,Female,36,87,27 0170,Male,32,87,63 0171,Male,40,87,13 0172,Male,28,87,75 0173,Male,36,87,10 0174,Male,36,87,92 0175,Female,52,88,13 0176,Female,30,88,86 0177,Male,58,88,15 0178,Male,27,88,69 0179,Male,59,93,14 0180,Male,35,93,90 0181,Female,37,97,32 0182,Female,32,97,86 0183,Male,46,98,15 0184,Female,29,98,88 0185,Female,41,99,39 0186,Male,30,99,97 0187,Female,54,101,24 0188,Male,28,101,68 0189,Female,41,103,17 0190,Female,36,103,85 0191,Female,34,103,23 0192,Female,32,103,69 0193,Male,33,113,8 0194,Female,38,113,91 0195,Female,47,120,16 0196,Female,35,120,79 0197,Female,45,126,28 0198,Male,32,126,74 0199,Male,32,137,18 0200,Male,30,137,83

运行结果:

最新回复(0)