经常碰到这样一类排序问题:把新的数据插入到已经排好的数据列中。
将第一个数和第二个数排序,然后构成一个有序序列
将第三个数插入进去,构成一个新的有序序列。
对第四个数、第五个数……直到最后一个数,重复第二步。
如何写写成代码:
首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用插入。
设定插入数和得到已经排好序列的最后一个数的位数。insertNum和j=i-1。
从最后一个数开始向前循环,如果插入数小于当前数,就将当前数向后移动一位。
将当前数放置到空着的位置,即j+1。
代码实现如下:
对于直接插入排序问题,数据量巨大时。
将数的个数设为n,取奇数k=n/2,将下标差值为k的书分为一组,构成有序序列。
再取k=k/2 ,将下标差值为k的书分为一组,构成有序序列。
重复第二步,直到k=1执行简单插入排序。
如何写成代码:
首先确定分的组数。
然后对组中元素进行插入排序。
然后将length/2,重复1,2步,直到length=0为止。
代码实现如下:
public void sheelSort(int[] a){ int d = a.length; while (d!=0) { d=d/2; for (int x = 0; x < d; x++) { for (int i = x + d; i < a.length; i += d) { int j = i - d; int temp = a[i]; for (; j >= 0 && temp < a[j]; j -= d) { a[j + d] = a[j]; } a[j + d] = temp; } } } }常用于取序列中最大最小的几个数时。
(如果每次比较都交换,那么就是交换排序;如果每次比较完一个循环再交换,就是简单选择排序。)
遍历整个序列,将最小的数放在最前面。
遍历剩下的序列,将最小的数放在最前面。
重复第二步,直到只剩下一个数。
如何写成代码:
首先确定循环次数,并且记住当前数字和当前位置。
将当前位置后面所有的数与当前数字进行对比,小数赋值给key,并记住小数的位置。
比对完成后,将最小的值与第一个数的值交换。
重复2、3步。
代码实现如下:
public void selectSort(int[] a) { int length = a.length; for (int i = 0; i < length; i++) { int key = a[i]; int position=i; for (int j = i + 1; j < length; j++) { if (a[j] < key) { key = a[j]; position = j; } } a[position]=a[i]; a[i]=key; } }对简单选择排序的优化。
将序列构建成大顶堆。
将根节点与最后一个节点交换,然后断开最后一个节点。
重复第一、二步,直到所有节点断开。
代码实现如下:
public void heapSort(int[] a){ System.out.println("开始排序"); int arrayLength=a.length; for(int i=0;i<arrayLength-1;i++){ buildMaxHeap(a,arrayLength-1-i); swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } private void swap(int[] data, int i, int j) { int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } private void buildMaxHeap(int[] data, int lastIndex) { for(int i=(lastIndex-1)/2;i>=0;i--){ int k=i; while(k*2+1<=lastIndex){ int biggerIndex=2*k+1; if(biggerIndex<lastIndex){ if(data[biggerIndex]<data[biggerIndex+1]){ biggerIndex++; } } if(data[k]<data[biggerIndex]){ swap(data,k,biggerIndex); k=biggerIndex; }else{ break; } } } }一般不用。
将序列中所有元素两两比较,将最大的放在最后面。
将剩余序列中所有元素两两比较,将最大的放在最后面。
重复第二步,直到只剩下一个数。
如何写成代码:
设置循环次数。
设置开始比较的位数,和结束的位数。
两两比较,将最小的放到前面去。
重复2、3步,直到循环次数完毕。
代码实现如下:
要求时间最快时。
选择第一个数为p,小于p的数放在左边,大于p的数放在右边。
2.递归的将p左边和右边的数都按照第一步进行,直到不能递归。
代码实现如下:
public static void quickSort(int[] numbers, int start, int end) { if (start < end) { int base = numbers[start]; int temp; int i = start, j = end; do { while ((numbers[i] < base) && (i < end)) i++; while ((numbers[j] > base) && (j > start)) j--; if (i <= j) { temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; i++; j--; } } while (i <= j); if (start < j) quickSort(numbers, start, j); if (end > i) quickSort(numbers, i, end); } }速度仅次于快排,内存少的时候使用,可以进行并行计算的时候使用。
选择相邻两个数组成一个有序序列。
选择相邻的两个有序序列组成一个有序序列。
重复第二步,直到全部组成一个有序序列。
代码实现如下:
public static void mergeSort(int[] numbers, int left, int right) { int t = 1; int size = right - left + 1; while (t < size) { int s = t; t = 2 * s; int i = left; while (i + (t - 1) < size) { merge(numbers, i, i + (s - 1), i + (t - 1)); i += t; } if (i + (s - 1) < right) merge(numbers, i, i + (s - 1), right); } } private static void merge(int[] data, int p, int q, int r) { int[] B = new int[data.length]; int s = p; int t = q + 1; int k = p; while (s <= q && t <= r) { if (data[s] <= data[t]) { B[k] = data[s]; s++; } else { B[k] = data[t]; t++; } k++; } if (s == q + 1) B[k++] = data[t++]; else B[k++] = data[s++]; for (int i = p; i <= r; i++) data[i] = B[i]; }用于大量数,很长的数进行排序时。
将所有的数的个位数取出,按照个位数进行排序,构成一个序列。
将新构成的所有的数的十位数取出,按照十位数进行排序,构成一个序列。
代码实现如下:
public void sort(int[] array) { int max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } int time = 0; while (max > 0) { max /= 10; time++; } List<ArrayList> queue = new ArrayList<ArrayList>(); for (int i = 0; i < 10; i++) { ArrayList<Integer> queue1 = new ArrayList<Integer>(); queue.add(queue1); } for (int i = 0; i < time; i++) { for (int j = 0; j < array.length; j++) { int x = array[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i); ArrayList<Integer> queue2 = queue.get(x); queue2.add(array[j]); queue.set(x, queue2); } int count = 0; for (int k = 0; k < 10; k++) { while (queue.get(k).size() > 0) { ArrayList<Integer> queue3 = queue.get(k); array[count] = queue3.get(0); queue3.remove(0); count++; } } } } 推荐阅读 ↓↓↓