效果图:键盘控制各个x,y,z,还有fov数值
一开始的w, h = img.shape[0:2]这里宽、高错乱,原因未知,只能这么用 python版本的:
# -*- coding:utf-8 -*- import cv2 import numpy as np def rad(x): return x * np.pi / 180 img = cv2.imread("./dog.jpeg") cv2.namedWindow("original",0) cv2.imshow("original", img) # 扩展图像,保证内容不超出可视范围 img = cv2.copyMakeBorder(img, 200, 200, 200, 200, cv2.BORDER_CONSTANT, 0) w, h = img.shape[0:2] anglex = 0 angley = 30 anglez = 0 #是旋转 fov = 42 while 1: # 镜头与图像间的距离,21为半可视角,算z的距离是为了保证在此可视角度下恰好显示整幅图像 z = np.sqrt(w ** 2 + h ** 2) / 2 / np.tan(rad(fov / 2)) # 齐次变换矩阵 rx = np.array([[1, 0, 0, 0], [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [0, -np.sin(rad(anglex)), np.cos(rad(anglex)), 0, ], [0, 0, 0, 1]], np.float32) ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], [0, 1, 0, 0], [-np.sin(rad(angley)), 0, np.cos(rad(angley)), 0, ], [0, 0, 0, 1]], np.float32) rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) r = rx.dot(ry).dot(rz) # 四对点的生成 pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) p1 = np.array([0, 0, 0, 0], np.float32) - pcenter p2 = np.array([w, 0, 0, 0], np.float32) - pcenter p3 = np.array([0, h, 0, 0], np.float32) - pcenter p4 = np.array([w, h, 0, 0], np.float32) - pcenter dst1 = r.dot(p1) dst2 = r.dot(p2) dst3 = r.dot(p3) dst4 = r.dot(p4) list_dst = [dst1, dst2, dst3, dst4] org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) dst = np.zeros((4, 2), np.float32) # 投影至成像平面 for i in range(4): dst[i, 0] = list_dst[i][0] * z / (z - list_dst[i][2]) + pcenter[0] dst[i, 1] = list_dst[i][1] * z / (z - list_dst[i][2]) + pcenter[1] warpR = cv2.getPerspectiveTransform(org, dst) result = cv2.warpPerspective(img, warpR, (h, w)) cv2.namedWindow("result",0) cv2.imshow("result", result) c = cv2.waitKey(30) # anglex += 3 #auto rotate # anglez += 1 #auto rotate # angley += 2 #auto rotate # 键盘控制 if 27 == c: # Esc quit break; if c == ord('w'): anglex += 1 if c == ord('s'): anglex -= 1 if c == ord('a'): angley += 1 # dx=0 if c == ord('d'): angley -= 1 if c == ord('u'): anglez += 1 if c == ord('p'): anglez -= 1 if c == ord('t'): fov += 1 if c == ord('r'): fov -= 1 if c == ord(' '): anglex = angley = anglez = 0 if c == ord('q'): print("======================================") print('旋转矩阵:\n', r) print("angle alpha: ", anglex, 'angle beta: ', angley, "dz: ", anglez, ": ", z) cv2.destroyAllWindows()c++ 版本:
#include <iostream> #include <math.h> #include "opencv2/opencv.hpp" using namespace std; using namespace cv; double rad(double x) { return x * CV_PI / 180.0; } int main(int argc, char *argv[]) { Mat img = imread("dog.jpeg"); namedWindow("original",0); imshow("original",img); copyMakeBorder(img,img,200,200,200,200,BORDER_CONSTANT,0); // int w = img.cols; // int h = img.rows; int h = img.cols; int w = img.rows; double anglex = 0; double angley = -62.72; double anglez = 32; double fov = 56; while(1) { double z = sqrt(w*w + h*h)/2.0/tan(rad(fov/2.0)); double arr_x[4][4] = {1,0,0,0, 0,cos(rad(anglex)),-sin(rad(anglex)),0, 0,-sin(rad(anglex)),cos(rad(anglex)),0, 0,0,0,1}; Mat rx(4,4,CV_64F,arr_x); double arr_y[4][4] = {cos(rad(angley)),0,sin(rad(angley)),0, 0,1,0,0, -sin(rad(angley)),0,cos(rad(angley)),0, 0,0,0,1}; Mat ry(4,4,CV_64F,arr_y); double arr_z[4][4] = {cos(rad(anglez)),sin(rad(anglez)),0,0, -sin(rad(anglez)),cos(rad(anglez)),0,0, 0,0,1,0, 0,0,0,1}; Mat rz(4,4,CV_64F,arr_z); Mat r = rx*ry*rz; double arr_center[4] = {h/2.0,w/2.0,0,0}; Mat pcenter(1,4,CV_64F,arr_center); double arr_t1[4] = {0,0,0,0},arr_t2[4] = {w,0,0,0}, arr_t3[4] = {0,h,0,0}, arr_t4[4] = {w,h,0,0}; Mat m_t1(1,4,CV_64F,arr_t1),m_t2(1,4,CV_64F,arr_t2),m_t3(1,4,CV_64F,arr_t3),m_t4(1,4,CV_64F,arr_t4); Mat p1 = m_t1 - pcenter; Mat p2 = m_t2 - pcenter; Mat p3 = m_t3 - pcenter; Mat p4 = m_t4 - pcenter; Mat r_transpose; transpose(r,r_transpose); Mat dst1 = p1 * r_transpose; Mat dst2 = p2 * r_transpose; Mat dst3 = p3 * r_transpose; Mat dst4 = p4 * r_transpose; vector<Mat> list_dst = {dst1,dst2,dst3,dst4}; Point2f org[4] = {Point2f(0,0),Point2f(w,0),Point2f(0,h),Point2f(w,h)}; Point2f dst[4]; for(int i=0;i<4;i++) { dst[i].x = list_dst[i].at<double>(0,0) * z / (z - list_dst[i].at<double>(0,2)) + pcenter.at<double>(0,0); dst[i].y = list_dst[i].at<double>(0,1) * z / (z - list_dst[i].at<double>(0,2)) + pcenter.at<double>(0,1); } Mat result; cv::Mat warpMatrix = cv::getPerspectiveTransform(org, dst); cv::warpPerspective(img, result, warpMatrix, Size(h,w)); namedWindow("result",0); imshow("result",result); char c = waitKey(0); if(27 == c) { break; } if('w' == c) { anglex += 1; } if('s' == c) { anglex -= 1; } if('a' == c) { angley += 1; } if('d' == c) { angley -= 1; } if('u' == c) { anglez += 1; } if('p' == c) { anglez -= 1; } if('t' == c) { fov += 1; } if('r' == c) { fov -= 1; } if(' ' == c) { anglex = 0; angley = 0; anglez = 0; } if('q' == c) { cout<<"angle alpha(anglex): "<<anglex<<" angle beta(angley): "<<angley<<" dz(anglez): "<<anglez<<" z="<<z<<" fov="<<fov<<endl; } } return 0; }