【机器学习】第一部分:数据预处理

mac2025-02-05  17

全面建立机器学习的知识架构,并且在Python里构建不同的机器学习模型。

针对如下数据构建用户行为特征模型 目的:通过已有的用户信息,国家,年龄,薪水构建模型,预测以后用户购买行为。

一、数据预处理

# Data Preprocessing Template # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('Data.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 3].values # Taking care of missing data from sklearn.preprocessing import Imputer imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3]) # Encoding categorical data # Encoding the Independent Variable from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:, 0] = labelencoder_X.fit_transform(X[:, 0]) onehotencoder = OneHotEncoder(categorical_features = [0]) X = onehotencoder.fit_transform(X).toarray() # Encoding the Dependent Variable labelencoder_y = LabelEncoder() y = labelencoder_y.fit_transform(y) # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)"""

二、预处理结果

最新回复(0)