方法二:
plt.figure() classes = [0,1,2] plt.imshow(C2, interpolation='nearest', cmap=plt.cm.Oranges) # 按照像素显示出矩阵 plt.title('confusion_matrix') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes) plt.yticks(tick_marks, classes) thresh = C2.max() / 2. # iters = [[i,j] for i in range(len(classes)) for j in range((classes))] # ij配对,遍历矩阵迭代器 iters = np.reshape([[[i, j] for j in range(len(classes))] for i in range(len(classes))], (C2.size, 2)) for i, j in iters: plt.text(j, i, format(C2[i, j])) # 显示对应的数字 plt.ylabel('Real label') plt.xlabel('Prediction') plt.tight_layout() plt.show()
可以看出,因为数据量的严重不均衡,但是,模型的识别能力还是蛮不错的;