HasMap 存值
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; /*如果table的在(n-1)&hash的值是空,就新建一个节点插入在该位置*/ if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); /*表示有冲突,开始处理冲突*/ else { Node<K,V> e; K k; /*检查第一个Node,p是不是要找的值*/ if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { /*指针为空就挂在后面*/ if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); //如果冲突的节点数已经达到8个,看是否需要改变冲突节点的存储结构, //treeifyBin首先判断当前hashMap的长度,如果不足64,只进行 //resize,扩容table,如果达到64,那么将冲突的存储结构为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } /*如果有相同的key值就结束遍历*/ if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } /*就是链表上有相同的key值*/ if (e != null) { // existing mapping for key,就是key的Value存在 V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue;//返回存在的Value值 } } ++modCount; /*如果当前大小大于门限,门限原本是初始容量*0.75*/ if (++size > threshold) resize();//扩容两倍 afterNodeInsertion(evict); return null; }下面简单说下添加键值对put(key,value)的过程: 1,判断键值对数组tab[]是否为空或为null,否则以默认大小resize(); 2,根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3 3,判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理
get(key)方法时获取key的hash值,计算hash&(n-1)得到在链表数组中的位置first=tab[hash&(n-1)],先判断first的key是否与参数key相等,不等就遍历后面的链表找到相同的key值返回对应的Value值即可
## resize() 扩容 final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; /*如果旧表的长度不是空*/ if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } /*把新表的长度设置为旧表长度的两倍,newCap=2*oldCap*/ else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) /*把新表的门限设置为旧表门限的两倍,newThr=oldThr*2*/ newThr = oldThr << 1; // double threshold } /*如果旧表的长度的是0,就是说第一次初始化表*/ else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor;//新表长度乘以加载因子 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) /*下面开始构造新表,初始化表中的数据*/ Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab;//把新表赋值给table if (oldTab != null) {//原表不是空要把原表中数据移动到新表中 /*遍历原来的旧表*/ for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null)//说明这个node没有链表直接放在新表的e.hash & (newCap - 1)位置 newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); /*如果e后边有链表,到这里表示e后面带着个单链表,需要遍历单链表,将每个结点重*/ else { // preserve order保证顺序 新计算在新表的位置,并进行搬运 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next;//记录下一个结点 //新表是旧表的两倍容量,实例上就把单链表拆分为两队, //e.hash&oldCap为偶数一队,e.hash&oldCap为奇数一对 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) {//lo队不为null,放在新表原位置 loTail.next = null; newTab[j] = loHead; } if (hiTail != null) {//hi队不为null,放在新表j+oldCap位置 hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }