机器学习练习数据哪里找?两行代码搞定!

mac2025-05-27  28

欢迎关注微信公众号:简说Python

本文授权转载自机器学习初学者 禁止二次转载

初学者学习机器学习的时候,经常会找不到练习的数据,实际上scikit-learn内置了很多可以用于机器学习的数据,可以用两行代码就可以使用这些数据。

一、自带数据集

自带的小的数据集为:sklearn.datasets.load_<name>

load_bostonBoston房屋价格回归506*13fetch_california_housing加州住房回归20640*9load_diabetes糖尿病回归442*10load_digits手写字分类1797*64load_breast_cancer乳腺癌分类、聚类(357+212)*30load_iris鸢尾花分类、聚类(50*3)*4load_wine葡萄酒分类(59+71+48)*13load_linnerud体能训练多分类20

怎么用:

数据集的信息关键字:

DESCR:

数据集的描述信息

data:

内部数据(即:X)

feature_names:

数据字段名

target:

数据标签(即:y)

target_names:

标签字段名(回归数据集无此项) 

使用方法(以load_iris为例)

数据介绍:

一般用于做分类测试

有150个数据集,共分为3类,每类50个样本。每个样本有4个特征。

每条记录都有 4 项特征:包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。

可以通过这4个特征预测鸢尾花卉属于(iris-setosa(山鸢尾), iris-versicolour(杂色鸢尾), iris-virginica(维吉尼亚鸢尾))中的哪一品种。

第一步:

导入数据

from sklearn.datasets import load_iris iris = load_iris() X, y = iris.data, iris.target X.shape,y.shape iris.feature_names

输出为:

划分训练集和测试集:

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

这样就把训练集和测试集按照3比1划分了,接下来就可以用机器学习算法进行训练和测试了。

小技巧:将数据转换为Dataframe格式(两种方法都可以):

import pandas as pd df_X = pd.DataFrame(iris.data, columns=iris.feature_names) #这个是X df_y = pd.DataFrame(iris.target, columns=["target"]) #这个是y df=pd.concat([df_X,df2],axis=1)#横向合并 df.head()

或者:

import numpy as np import pandas as pd col_names = iris['feature_names'] + ['target'] df = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns=col_names) df.head()

输出结果一致:

二、可在线下载的数据集(需要下载)

下载的数据集为:sklearn.datasets.fetch_<name>

这类数据需要在线下载,有点慢

fetch_20newsgroups

用于文本分类、文本挖据和信息检索研究的国际标准数据集之一。数据集收集了大约20,000左右的新闻组文档,均匀分为20个不同主题的新闻组集合。返回一个可以被文本特征提取器

fetch_20newsgroups_vectorized

这是上面这个文本数据的向量化后的数据,返回一个已提取特征的文本序列,即不需要使用特征提取器

fetch_california_housing

加利福尼亚的房价数据,总计20640个样本,每个样本8个属性表示,以及房价作为target,所有属性值均为number,详情可调用fetch_california_housing()['DESCR']了解每个属性的具体含义;

fetch_covtype

森林植被类型,总计581012个样本,每个样本由54个维度表示(12个属性,其中2个分别是onehot4维和onehot40维),以及target表示植被类型1-7,所有属性值均为number,详情可调用fetch_covtype()['DESCR']了解每个属性的具体含义

fetch_kddcup99

KDD竞赛在1999年举行时采用的数据集,KDD99数据集仍然是网络入侵检测领域的事实Benckmark,为基于计算智能的网络入侵检测研究奠定基础,包含41项特征

fetch_lfw_pairs

该任务称为人脸验证:给定一对两张图片,二分类器必须预测这两个图片是否来自同一个人。

fetch_lfw_people

打好标签的人脸数据集

fetch_mldata

从 mldata.org 中下载数据集

fetch_olivetti_faces

Olivetti 脸部图片数据集

fetch_rcv1

路透社新闻语聊数据集

fetch_species_distributions

物种分布数据集

使用方法与自带数据集一致,只是多了下载过程(示例:fetch_20newsgroups)

from sklearn.datasets import fetch_20newsgroups news = fetch_20newsgroups(subset='all') #本次使用的数据需要到互联网上下载 from sklearn.model_selection import train_test_split #对数据训练集和测试件进行划分 X_train, X_test, y_train, y_test = train_test_split(     news.data, news.target, test_size=0.25, random_state=33)

三、生成数据集

可以用来分类任务,可以用来回归任务,可以用来聚类任务,用于流形学习的,用于因子分解任务的,用于分类任务和聚类任务的:这些函数产生样本特征向量矩阵以及对应的类别标签集合

make_blobs:多类单标签数据集,为每个类分配一个或多个正态分布的点集

make_classification:多类单标签数据集,为每个类分配一个或多个正态分布的点集,提供了为数据添加噪声的方式,包括维度相关性,无效特征以及冗余特征等

make_gaussian-quantiles:将一个单高斯分布的点集划分为两个数量均等的点集,作为两类

make_hastie-10-2:产生一个相似的二元分类数据集,有10个维度

make_circle和make_moons:产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据

举例:

import matplotlib.pyplot as plt from sklearn.datasets import make_moons X, y = make_moons(n_samples=100, noise=0.15, random_state=42) plt.title('make_moons function example') plt.scatter(X[:,0],X[:,1],marker='o',c=y) plt.show()

四、其它数据集

kaggle:

https://www.kaggle.com

天池:

https://tianchi.aliyun.com/dataset

搜狗实验室:

http://www.sogou.com/labs/resource/list_pingce.php

DC竞赛:

https://www.pkbigdata.com/common/cmptIndex.html

DF竞赛:

https://www.datafountain.cn/datasets

总结

本文为机器学习初学者提供了使用scikit-learn内置数据的方法,用两行代码就可以使用这些数据,可以进行大部分的机器学习实验了。

参考

https://scikit-learn.org/stable/datasets/index.html

每日 留言 说说你读完本文感受? 或者一句激励自己的话? (字数不少于15字) 怎么 加入 刻 意 学 习队 伍 留言 有啥 福利 想进学 习交流 群 加 微信: jjxksa888 备 注 :简说Python
最新回复(0)