Flume拦截器

mac2025-06-18  10

一、Flume拦截器

时间戳拦截器

Timestamp.conf

#1.定义agent名, source、channel、sink的名称 a4.sources = r1 a4.channels = c1 a4.sinks = k1 #2.具体定义source a4.sources.r1.type = spooldir a4.sources.r1.spoolDir = /opt/module/flume-1.8.0/upload #定义拦截器,为文件最后添加时间戳 a4.sources.r1.interceptors = i1 a4.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder #具体定义channel a4.channels.c1.type = memory a4.channels.c1.capacity = 10000 a4.channels.c1.transactionCapacity = 100 #具体定义sink a4.sinks.k1.type = hdfs a4.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume-interceptors/%H a4.sinks.k1.hdfs.filePrefix = events- a4.sinks.k1.hdfs.fileType = DataStream #不按照条数生成文件 a4.sinks.k1.hdfs.rollCount = 0 #HDFS上的文件达到128M时生成一个文件 a4.sinks.k1.hdfs.rollSize = 134217728 #HDFS上的文件达到60秒生成一个文件 a4.sinks.k1.hdfs.rollInterval = 60 #组装source、channel、sink a4.sources.r1.channels = c1 a4.sinks.k1.channel = c1

启动命令

/opt/module/flume-1.8.0/bin/flume-ng agent -n a4 \ -f /opt/module/flume-1.8.0/jobconf/flume-interceptors.conf \ -c /opt/module/flume-1.8.0/conf \ -Dflume.root.logger=INFO,console

主机名拦截器

Host.conf

#1.定义agent a1.sources= r1 a1.sinks = k1 a1.channels = c1 #2.定义source a1.sources.r1.type = exec a1.sources.r1.channels = c1 a1.sources.r1.command = tail -F /opt/Andy #拦截器 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = host #参数为true时用IP192.168.1.111,参数为false时用主机名,默认为true a1.sources.r1.interceptors.i1.useIP = false a1.sources.r1.interceptors.i1.hostHeader = agentHost #3.定义sinks a1.sinks.k1.type=hdfs a1.sinks.k1.channel = c1 a1.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flumehost/%H a1.sinks.k1.hdfs.filePrefix = Andy_%{agentHost} #往生成的文件加后缀名.log a1.sinks.k1.hdfs.fileSuffix = .log a1.sinks.k1.hdfs.fileType = DataStream a1.sinks.k1.hdfs.writeFormat = Text a1.sinks.k1.hdfs.rollInterval = 10 a1.sinks.k1.hdfs.useLocalTimeStamp = true a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1

启动命令:

bin/flume-ng agent -c conf/ -f jobconf/host.conf -n a1 -Dflume.root.logger=INFO,console

UUID拦截器

uuid.conf

a1.sources = r1 a1.sinks = k1 a1.channels = c1 a1.sources.r1.type = exec a1.sources.r1.channels = c1 a1.sources.r1.command = tail -F /opt/Andy a1.sources.r1.interceptors = i1 #type的参数不能写成uuid,得写具体,否则找不到类 a1.sources.r1.interceptors.i1.type = org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder #如果UUID头已经存在,它应该保存 a1.sources.r1.interceptors.i1.preserveExisting = true a1.sources.r1.interceptors.i1.prefix = UUID_ #如果sink类型改为HDFS,那么在HDFS的文本中没有headers的信息数据 a1.sinks.k1.type = logger a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 # bin/flume-ng agent -c conf/ -f jobconf/uuid.conf -n a1 -Dflume.root.logger==INFO,console

查询替换拦截器

search.conf

#1 agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 #2 source a1.sources.r1.type = exec a1.sources.r1.channels = c1 a1.sources.r1.command = tail -F /opt/Andy a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = search_replace #遇到数字改成AncientMing,A123会替换为AAncientMing a1.sources.r1.interceptors.i1.searchPattern = [0-9]+ a1.sources.r1.interceptors.i1.replaceString = AncientMing a1.sources.r1.interceptors.i1.charset = UTF-8 #3 sink a1.sinks.k1.type = logger #4 Chanel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 #5 bind a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 # bin/flume-ng agent -c conf/ -f jobconf/search.conf -n a1 -Dflume.root.logger=INFO,console

正则过滤拦截器

filter.conf

#1 agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 #2 source a1.sources.r1.type = exec a1.sources.r1.channels = c1 a1.sources.r1.command = tail -F /opt/Andy a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = regex_filter a1.sources.r1.interceptors.i1.regex = ^A.* #如果excludeEvents设为false,表示过滤掉不是以A开头的events。如果excludeEvents设为true,则表示过滤掉以A开头的events。 a1.sources.r1.interceptors.i1.excludeEvents = true a1.sinks.k1.type = logger a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 # bin/flume-ng agent -c conf/ -f jobconf/filter.conf -n a1 -Dflume.root.logger=INFO,console

正则抽取拦截器

extractor.conf

#1 agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 #2 source a1.sources.r1.type = exec a1.sources.r1.channels = c1 a1.sources.r1.command = tail -F /opt/Andy a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = regex_extractor a1.sources.r1.interceptors.i1.regex = hostname is (.*?) ip is (.*) a1.sources.r1.interceptors.i1.serializers = s1 s2 a1.sources.r1.interceptors.i1.serializers.s1.name = cookieid a1.sources.r1.interceptors.i1.serializers.s2.name = ip a1.sinks.k1.type = logger a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 # bin/flume-ng agent -c conf/ -f jobconf/extractor.conf -n a1 -Dflume.root.logger=INFO,console

注:正则抽取拦截器的headers不会出现在文件名和文件内容中

二、Flume自定义拦截器

字母小写变大写

1.Pom.xml

<dependencies> <!-- flume核心依赖 --> <dependency> <groupId>org.apache.flume</groupId> <artifactId>flume-ng-core</artifactId> <version>1.8.0</version> </dependency> </dependencies> <build> <plugins> <!-- 打包插件 --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-plugin</artifactId> <version>2.4</version> <configuration> <archive> <manifest> <addClasspath>true</addClasspath> <classpathPrefix>lib/</classpathPrefix> <mainClass></mainClass> </manifest> </archive> </configuration> </plugin> <!-- 编译插件 --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> <encoding>utf-8</encoding> </configuration> </plugin> </plugins> </build>

2.自定义实现拦截器

import org.apache.flume.Context; import org.apache.flume.Event; import org.apache.flume.interceptor.Interceptor; import java.util.ArrayList; import java.util.List; public class MyInterceptor implements Interceptor { @Override public void initialize() { } @Override public void close() { } /** * 拦截source发送到通道channel中的消息 * * @param event 接收过滤的event * @return event 根据业务处理后的event */ @Override public Event intercept(Event event) { // 获取事件对象中的字节数据 byte[] arr = event.getBody(); // 将获取的数据转换成大写 event.setBody(new String(arr).toUpperCase().getBytes()); // 返回到消息中 return event; } // 接收被过滤事件集合 @Override public List<Event> intercept(List<Event> events) { List<Event> list = new ArrayList<>(); for (Event event : events) { list.add(intercept(event)); } return list; } public static class Builder implements Interceptor.Builder { // 获取配置文件的属性 @Override public Interceptor build() { return new MyInterceptor(); } @Override public void configure(Context context) { } }

使用Maven做成Jar包,在flume的目录下mkdir jar,上传此jar到jar目录中

Flume配置文件

ToUpCase.conf

#1.agent a1.sources = r1 a1.sinks =k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /opt/Andy a1.sources.r1.interceptors = i1 #全类名$Builder a1.sources.r1.interceptors.i1.type = ToUpCase.MyInterceptor$Builder # Describe the sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path = /ToUpCase1 a1.sinks.k1.hdfs.filePrefix = events- a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute a1.sinks.k1.hdfs.rollInterval = 3 a1.sinks.k1.hdfs.rollSize = 20 a1.sinks.k1.hdfs.rollCount = 5 a1.sinks.k1.hdfs.batchSize = 1 a1.sinks.k1.hdfs.useLocalTimeStamp = true #生成的文件类型,默认是 Sequencefile,可用 DataStream,则为普通文本 a1.sinks.k1.hdfs.fileType = DataStream # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1

运行命令:

bin/flume-ng agent -c conf/ -n a1 -f jar/ToUpCase.conf -C jar/Flume-1.0-SNAPSHOT.jar -Dflume.root.logger=DEBUG,console

三、Flume对接kafka

配置flume(flume-kafka.conf)

# define a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type = exec a1.sources.r1.command = tail -F -c +0 /opt/jars/calllog.csv a1.sources.r1.shell = /bin/bash -c # sink a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.k1.brokerList = bigdata111:9092,bigdata112:9092,bigdata113:9092 a1.sinks.k1.topic = calllog a1.sinks.k1.batchSize = 20 a1.sinks.k1.requiredAcks = 1 # channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # bind a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1

进入flume根目录下,启动flume

/opt/module/flume-1.8.0/bin/flume-ng agent --conf /opt/module/flume-1.8.0/conf/ --name a1 --conf-file /opt/jars/flume2kafka.conf

四、kafka对接Flume

kafka2flume.conf

agent.sources = kafkaSource agent.channels = memoryChannel agent.sinks = hdfsSink # The channel can be defined as follows. agent.sources.kafkaSource.channels = memoryChannel agent.sources.kafkaSource.type=org.apache.flume.source.kafka.KafkaSource agent.sources.kafkaSource.zookeeperConnect=bigdata111:2181,bigdata112:2181,bigdata113:2181 agent.sources.kafkaSource.topic=calllog #agent.sources.kafkaSource.groupId=flume agent.sources.kafkaSource.kafka.consumer.timeout.ms=100 agent.channels.memoryChannel.type=memory agent.channels.memoryChannel.capacity=10000 agent.channels.memoryChannel.transactionCapacity=1000 agent.channels.memoryChannel.type=memory agent.channels.memoryChannel.capacity=10000 agent.channels.memoryChannel.transactionCapacity=1000 # the sink of hdfs agent.sinks.hdfsSink.type=hdfs agent.sinks.hdfsSink.channel = memoryChannel agent.sinks.hdfsSink.hdfs.path=hdfs://bigdata111:9000/kafka2flume agent.sinks.hdfsSink.hdfs.writeFormat=Text agent.sinks.hdfsSink.hdfs.fileType=DataStream #这两个不配置,会产生大量的小文件 agent.sinks.hdfsSink.hdfs.rollSize=0 agent.sinks.hdfsSink.hdfs.rollCount=0

启动命令

bin/flume-ng agent --conf conf --conf-file jobconf/kafka2flume.conf --name agent -Dflume.root.logger=INFO,console

注意:这个配置是从kafka过数据,但是需要重新向kafka的topic灌数据,他才会传到HDFS

最新回复(0)