TensorFlow学习(四)

mac2025-09-13  8

TensorFlow学习(四)

TensorFlow学习(四)CNN

TensorFlow学习(四)

CNN

传统的神经网络权值太多,计算量太大,需要大量样本进行训练。 卷积神经网络,通过感受野和权值共享减少了神经网络需要训练的参数个数。 卷积 对于不同的卷积核: 代码使用卷积神经网络进行数字识别: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) batch_size = 100 n_batch = mnist.train.num_examples // batch_size #初始化权值 def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.1)#生成一个截断的正态分布 return tf.Variable(initial) #初始化偏置 def bias_variable(shape): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial) #卷积层 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') #池化层 def max_pool_2x2(x): return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) x_image = tf.reshape(x,[-1,28,28,1]) ### 神经网络 W_conv1 = weight_variable([5,5,1,32])#5*5的采样窗口,32个卷积核从1个平面抽取特征 b_conv1 = bias_variable([32])#每一个卷积核一个偏置值 conv2d_1 = conv2d(x_image,W_conv1) + b_conv1 h_conv1 = tf.nn.relu(conv2d_1) h_pool1 = max_pool_2x2(h_conv1)#进行max-pooling W_conv2 = weight_variable([5,5,32,64])#5*5的采样窗口,64个卷积核从32个平面抽取特征 b_conv2 = bias_variable([64])#每一个卷积核一个偏置值 conv2d_2 = conv2d(h_pool1,W_conv2) + b_conv2 h_conv2 = tf.nn.relu(conv2d_2) h_pool2 = max_pool_2x2(h_conv2)#进行max-pooling #28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14 #第二次卷积后为14*14,第二次池化后变为了7*7 #进过上面操作后得到647*7的平面 #全连接层 #参数 W_fc1 = weight_variable([7*7*64,1024])#上一场有7*7*64个神经元,全连接层有1024个神经元 b_fc1 = bias_variable([1024])#1024个节点 #把池化层2的输出扁平化为1维 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) wx_plus_b1 = tf.matmul(h_pool2_flat,W_fc1) + b_fc1 h_fc1 = tf.nn.relu(wx_plus_b1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #第二个全连接层 W_fc2 = weight_variable([1024,10]) b_fc2 = bias_variable([10]) wx_plus_b2 = tf.matmul(h_fc1_drop,W_fc2) + b_fc2 #计算输出 prediction = tf.nn.softmax(wx_plus_b2) #交叉熵代价函数,使用AdamOptimizer进行优化 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #求准确率 #结果存放在一个布尔列表中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(10): for batch in range(n_batch): #训练模型 batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))

结果:

最新回复(0)