使用darknet批量测试图片并保存在指定文件夹下

mac2025-10-11  6

转载声明 http://www.pianshen.com/article/5369321777/

测试时:Makefile前五行一定全调为0

当我们使用darknet框架使用测试语句时,系统调用程序语句,我们需要的是加入可以连续调用图片的系统,在模型载入内存的情况下,完成图片检测。

1.用下面代码替换detector.c文件(example文件夹下)的void test_detector函数(注意有3处要改成自己的路径)

全部复制并代替,三处修改路径写对 此段代码来自https://blog.csdn.net/mieleizhi0522/article/details/79989754

void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen) { list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); image **alphabet = load_alphabet(); network *net = load_network(cfgfile, weightfile, 0); set_batch_network(net, 1); srand(2222222); double time; char buff[256]; char *input = buff; float nms=.45; int i=0; while(1){ if(filename){ strncpy(input, filename, 256); image im = load_image_color(input,0,0); image sized = letterbox_image(im, net->w, net->h); //image sized = resize_image(im, net->w, net->h); //image sized2 = resize_max(im, net->w); //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h); //resize_network(net, sized.w, sized.h); layer l = net->layers[net->n-1]; float *X = sized.data; time=what_time_is_it_now(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time); int nboxes = 0; detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes); //printf("%d\n", nboxes); //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms); if (nms) do_nms_sort(dets, nboxes, l.classes, nms); draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes); free_detections(dets, nboxes); if(outfile) { save_image(im, outfile); } else{ save_image(im, "predictions"); #ifdef OPENCV cvNamedWindow("predictions", CV_WINDOW_NORMAL); if(fullscreen){ cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN); } show_image(im, "predictions"); cvWaitKey(0); cvDestroyAllWindows(); #endif } free_image(im); free_image(sized); if (filename) break; } else { printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); list *plist = get_paths(input); char **paths = (char **)list_to_array(plist); printf("Start Testing!\n"); int m = plist->size; if(access("/home/FENGsl/darknet/data/out",0)==-1)//"/home/FENGsl/darknet/data"修改成自己的路径 { if (mkdir("/home/FENGsl/darknet/data/out",0777))//"/home/FENGsl/darknet/data"修改成自己的路径 { printf("creat file bag failed!!!"); } } for(i = 0; i < m; ++i){ char *path = paths[i]; image im = load_image_color(path,0,0); image sized = letterbox_image(im, net->w, net->h); //image sized = resize_image(im, net->w, net->h); //image sized2 = resize_max(im, net->w); //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h); //resize_network(net, sized.w, sized.h); layer l = net->layers[net->n-1]; float *X = sized.data; time=what_time_is_it_now(); network_predict(net, X); printf("Try Very Hard:"); printf("%s: Predicted in %f seconds.\n", path, what_time_is_it_now()-time); int nboxes = 0; detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes); //printf("%d\n", nboxes); //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms); if (nms) do_nms_sort(dets, nboxes, l.classes, nms); draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes); free_detections(dets, nboxes); if(outfile){ save_image(im, outfile); } else{ char b[2048]; sprintf(b,"/home/FENGsl/darknet/data/out/%s",GetFilename(path));//"/home/FENGsl/darknet/data"修改成自己的路径 save_image(im, b); printf("save %s successfully!\n",GetFilename(path)); #ifdef OPENCV cvNamedWindow("predictions", CV_WINDOW_NORMAL); if(fullscreen){ cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN); } show_image(im, "predictions"); cvWaitKey(0); cvDestroyAllWindows(); #endif } free_image(im); free_image(sized); if (filename) break; } } } }
2.在前面添加GetFilename(char p)函数(注意后面的注释)

全部复制(包括头文件) 此段代码来自https://blog.csdn.net/mieleizhi0522/article/details/79989754

#include "darknet.h" #include <sys/stat.h> #include<stdio.h> #include<time.h> #include<sys/types.h> static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; char *GetFilename(char *p) { static char name[20]={""}; char *q = strrchr(p,'/') + 1; strncpy(name,q,6);//注意后面的6,如果你的测试集的图片的名字字符(不包括后缀)是其他长度,请改为你需要的长度(官方的默认的长度是6) return name; }
3.在darknet下重新make

一定要记住重新make,在darknet文件下

make 通过darknet/example/darknet.c编译生成的libdarknet.so包被加载到python中最后被darknet.py调用

4.建立一个含有图片的文件夹

①文件名为6位的字符串 ②建立一个图片绝对路径文本

ls -R /home/******/YOLO-master/darknet/data/input/* > input.txt

5.执行批量测试命令如下

命令:./darknet detect cfg/yolov3.cfg yolov3.weights Enter Image Path:输入input.txt的路径

/xxx/xxx/xxx/input.txt
6.之后就完成了,在步骤1修改的路径的文件夹下保存图片

扩展知识:图片视频相互转换

视频转图片

import cv2 cap=cv2.VideoCapture("./test/test.mp4") i=1 while True: ret,im=cap.read() cv2.imwrite("./input/%06d.jpg"%i,im) i = i+1 print(i) if i == 72: break

图片转视频

import cv2 import os im_dir = './output_yolov3' num = 72 #这里是帧数 out = cv2.VideoWriter('aa.avi', 0, 29,(1280,720)) #每一个图片的大小必须一致与确定 for i in range(1,num): print(str("%06d"%i)) im_name = os.path.join(im_dir, str("%06d"%i)+'.jpg') frame = cv2.imread(im_name) cv2.imshow("frame",frame) out.write(frame) # print(im_name) out.release() print('finish')
最新回复(0)