费用流 MCMF算法

mac2025-12-26  9

Min cost Max flow算法

Luogu P3381

实现思路

邻接表保存时注意: 费用具有对称性,流量具有守恒性 spfa()根据边的容量\流量\花费来找到增广路, 以及维护每点的入边pre[i],和判断是否还有增广路EK()路程: 已经通过了spfa()确定了增广路,第一次while找到增广路可以通过的最大流量,第二次while()更新网络维护maxflow和maxFlowminCost #include <iostream> #include <cstring> #include <algorithm> #include <queue> using namespace std; const int inf = 1e9+5; const int maxn = 5005; const int maxm = 1e5+5; struct Edge { int v,c,flow,cost,next; } edge[maxm]; int n,m,source,sink; int tot; int head[maxn],dist[maxn],pre[maxm]; bool vis[maxn]; void addedge(int u,int v,int c,int cost) { edge[tot].v = v; edge[tot].c = c; edge[tot].cost = cost; edge[tot].flow = 0; edge[tot].next = head[u]; head[u] = tot++; edge[tot].v = u; edge[tot].c = 0; edge[tot].cost = -cost; edge[tot].flow = 0; edge[tot].next = head[v]; head[v] = tot++; } bool spfa(int source,int sink) { queue<int> que; memset(dist,inf,sizeof dist); memset(vis , 0, sizeof vis); memset(pre ,-1, sizeof pre); dist[source] = 0; vis[source] = 1; que.push(source); while (!que.empty()) { int cur = que.front(); que.pop(); vis[cur] = 0; for (int i=head[cur]; i!=-1; i=edge[i].next) { int v=edge[i].v; if (edge[i].c > edge[i].flow && dist[v] > dist[cur]+edge[i].cost) { dist[v] = dist[cur] + edge[i].cost; pre[v] = i; if (!vis[v]) { vis[v] = 1; que.push(v); } } } } if (pre[sink] == -1) return 0; return 1; } int EK(int source,int sink,int &cost) { int maxflow = 0; while (spfa(source,sink)) { int delta = inf; int i = pre[sink]; while (i != -1) { delta = min(delta,edge[i].c-edge[i].flow); i = pre[edge[i^1].v]; } i = pre[sink]; while (i != -1) { edge[i].flow += delta; edge[i^1].flow -= delta; cost += (delta * edge[i].cost); i = pre[edge[i^1].v]; } maxflow += delta; } return maxflow; } int main() { cin >> n >> m >> source >> sink; memset(head,-1,sizeof head); int u,v,w,f; for (int i=1; i<=m; ++i) { cin >> u >> v >> w >> f; addedge(u,v,w,f); } int cost = 0; int maxflow = EK(source,sink,cost); cout << maxflow << " " << cost << endl; return 0; }
最新回复(0)