半平面交

mac2026-02-06  0

#include <cstdio> #include <cmath> #include <iostream> using namespace std; #define eps 1e-8 const int MAXN=10017; int n; double r; int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数 struct point { double x,y; }; point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点 void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数 { a = y.y - x.y; b = x.x - y.x; c = y.x * x.y - x.x * y.y; } void initial() { for(int i = 1; i <= n; i++)p[i] = points[i]; p[n+1] = p[1]; p[0] = p[n]; cCnt = n;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数 } point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点 { double u = fabs(a * x.x + b * x.y + c); double v = fabs(a * y.x + b * y.y + c); point pt; pt.x=(x.x * v + y.x * u) / (u + v); pt.y=(x.y * v + y.y * u) / (u + v); return pt; } void cut(double a,double b ,double c) { curCnt = 0; int i; for(i = 1; i <= cCnt; ++i) { if(a*p[i].x + b*p[i].y + c >= 0)q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在, //故应该接着判断 else { if(a*p[i-1].x + b*p[i-1].y + c > 0) //如果p[i-1]在直线的右侧的话, { //则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少) q[++curCnt] = intersect(p[i],p[i-1],a,b,c); } if(a*p[i+1].x + b*p[i+1].y + c > 0) //原理同上 { q[++curCnt] = intersect(p[i],p[i+1],a,b,c); } } } for(i = 1; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中 p[curCnt+1] = q[1]; p[0] = p[curCnt]; cCnt = curCnt; } void solve() { //注意:默认点是顺时针,如果题目不是顺时针,规整化方向 initial(); for(int i = 1; i <= n; ++i) { double a,b,c; getline(points[i],points[i+1],a,b,c); cut(a,b,c); } /* 如果要向内推进r,用该部分代替上个函数 for(int i = 1; i <= n; ++i){ Point ta, tb, tt; tt.x = points[i+1].y - points[i].y; tt.y = points[i].x - points[i+1].x; double k = r / sqrt(tt.x * tt.x + tt.y * tt.y); tt.x = tt.x * k; tt.y = tt.y * k; ta.x = points[i].x + tt.x; ta.y = points[i].y + tt.y; tb.x = points[i+1].x + tt.x; tb.y = points[i+1].y + tt.y; double a,b,c; getline(ta,tb,a,b,c); cut(a,b,c); }*/ /* //多边形核的面积 double area = 0; for(int i = 1; i <= curCnt; ++i) area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y; area = fabs(area / 2.0); */ } /*void GuiZhengHua(){ //规整化方向,逆时针变顺时针,顺时针变逆时针 for(int i = 1; i < (n+1)/2; i ++) swap(points[i], points[n-i]); }*/ int main() { int t; scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i = 1; i <= n; i++)//逆时针反一下从n->1就好了 { scanf("%lf%lf",&points[i].x,&points[i].y); } points[n+1] = points[1]; solve(); if(cCnt < 1) printf("NO\n");//无核 else printf("YES\n");//有核 } return 0; }
最新回复(0)