Overview of Regularization
L0 regularization
L1 regularization
L2 regularization
Elastic Net regularization
L2,1 regularization
Model example
Reference
Main goal:
1. Prevent over-fitting
2. Reduce prediction error
3. Improve generalization performance
Essence:
1. Constraints the parameters to be optimized
2. Minimize your error while regularizing your parameters
1. Sparsity and Some Basics of L1 Regularization
2. A note on the group lasso and a sparse group lasso
3. Hierarchical Structured Sparse Representation
4. 正态分布的前世今生
5. https://www.zhihu.com/question/20924039
6. Sparse methods for machine learning
转载于:https://www.cnblogs.com/AcceptedLin/p/9778983.html
相关资源:JAVA上百实例源码以及开源项目