例1:从随机列表中,找到找到出现次数最高的3个元素,及出现次数
方法一:
from random import randint date = [randint(0, 20) for _ in range(100)] c = dict.fromkeys(date, 0) for x in date: c[x] += 1 c2 = sorted(c.items(), key = lambda k:k[1]) c3 = c2[len(c2)-3:] print(c3) date = [randint(0, 20) for _ in range(100)]:在0~20间,随机生产一个长度100的列表;dict.fromkeys(date, 0):以列表的值(不重复使用)做key,以0做值,生产字典; for x in date: c[x] += 1:统计随机list中各元素数量; c2 = sorted(c.items(), key = lambda k:k[1]):对统计的元素数量进行排序,以[(key,value)]形式;c3 = c2[len(c2)-3:]:返回最后3组数据,为目标结果;方法二:使用collections下的Counter对象
from collections import Counter from random import randint date = [randint(0, 20) for _ in range(100)] c1 = Counter(date) c2 = c1.most_common(3) print(c2) Counter(date):直接得到date中元素种类和数量,Counter({0: 7, 14: 7, 15: 7, 17: 7, 13: 6, 11: 6, 12: 5, 6: 5, 8: 5, 9: 5, 20: 4, 16: 4, 1: 4, 19: 4, 7: 4, 3: 4, 2: 4, 18: 3, 5: 3, 4: 3, 10: 3})c1.most_common(3),返回出现频率最多的3组数据;例2:统计一片英文文章中,出现频度最高的10个单词,及出现次数
import re
txt = open('文件x').read()
c = Counter(re.split('\W+', txt))
c1 = c.most_common(10) print(c1) txt = open('文件x').read():打开文件x;Counter(re.split('\W+', txt)):对txt数据进行分割后,得到一个list,并将list内元素种类和数量进行统计;c.most_common(10):将字典c1内数量最多的10个元素;转载于:https://www.cnblogs.com/valorchang/p/11434638.html
相关资源:JAVA上百实例源码以及开源项目