04-树7 二叉搜索树的操作集(30 point(s))
本题要求实现给定二叉搜索树的5种常用操作。 函数接口定义:
BinTree Insert( BinTree BST, ElementType X ); BinTree Delete( BinTree BST, ElementType X ); Position Find( BinTree BST, ElementType X ); Position FindMin( BinTree BST ); Position FindMax( BinTree BST );其中BinTree结构定义如下:
typedef struct TNode *Position; typedef Position BinTree; struct TNode{ ElementType Data; BinTree Left; BinTree Right; }; 函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针; 函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针; 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针; 函数FindMin返回二叉搜索树BST中最小元结点的指针; 函数FindMax返回二叉搜索树BST中最大元结点的指针。裁判测试程序样例:
#include <stdio.h> #include <stdlib.h> typedef int ElementType; typedef struct TNode *Position; typedef Position BinTree; struct TNode{ ElementType Data; BinTree Left; BinTree Right; }; void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */ void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */ BinTree Insert( BinTree BST, ElementType X ); BinTree Delete( BinTree BST, ElementType X ); Position Find( BinTree BST, ElementType X ); Position FindMin( BinTree BST ); Position FindMax( BinTree BST ); int main() { BinTree BST, MinP, MaxP, Tmp; ElementType X; int N, i; BST = NULL; scanf("%d", &N); for ( i=0; i<N; i++ ) { scanf("%d", &X); BST = Insert(BST, X); } printf("Preorder:"); PreorderTraversal(BST); printf("\n"); MinP = FindMin(BST); MaxP = FindMax(BST); scanf("%d", &N); for( i=0; i<N; i++ ) { scanf("%d", &X); Tmp = Find(BST, X); if (Tmp == NULL) printf("%d is not found\n", X); else { printf("%d is found\n", Tmp->Data); if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data); if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data); } } scanf("%d", &N); for( i=0; i<N; i++ ) { scanf("%d", &X); BST = Delete(BST, X); } printf("Inorder:"); InorderTraversal(BST); printf("\n"); return 0; } /* 你的代码将被嵌在这里 */输入样例:
10 5 8 6 2 4 1 0 10 9 7 5 6 3 10 0 5 5 5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9 6 is found 3 is not found 10 is found 10 is the largest key 0 is found 0 is the smallest key 5 is found Not Found Inorder: 1 2 4 6 8 9
思路
先序遍历 是 根 左 右 中序遍历 是 左 根 右
插入就是 如果目标比当前的结点大 就往右 递归 比当前结点小 往左递归 碰到 NULL 就插入
然后删除
如果左右子树都存在
那么就找右子树的最小结点来替代当前结点
如果右子数不存在 直接把左子树接过来 如果左子树不存在 直接把右子数接过来
AC代码
#include <stdio.h> #include <stdlib.h> typedef int ElementType; typedef struct TNode *Position; typedef Position BinTree; struct TNode{ ElementType Data; BinTree Left; BinTree Right; }; void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */ void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */ BinTree Insert( BinTree BST, ElementType X ); BinTree Delete( BinTree BST, ElementType X ); Position Find( BinTree BST, ElementType X ); Position FindMin( BinTree BST ); Position FindMax( BinTree BST ); int main() { BinTree BST, MinP, MaxP, Tmp; ElementType X; int N, i; BST = NULL; scanf("%d", &N); for ( i=0; i<N; i++ ) { scanf("%d", &X); BST = Insert(BST, X); } printf("Preorder:"); PreorderTraversal(BST); printf("\n"); MinP = FindMin(BST); MaxP = FindMax(BST); scanf("%d", &N); for( i=0; i<N; i++ ) { scanf("%d", &X); Tmp = Find(BST, X); if (Tmp == NULL) printf("%d is not found\n", X); else { printf("%d is found\n", Tmp->Data); if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data); if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data); } } scanf("%d", &N); for( i=0; i<N; i++ ) { scanf("%d", &X); BST = Delete(BST, X); } printf("Inorder:"); InorderTraversal(BST); printf("\n"); return 0; } /* 你的代码将被嵌在这里 */ void PreorderTraversal( BinTree BT ) { if (BT == NULL) return; printf(" %d", BT->Data); PreorderTraversal( BT->Left); PreorderTraversal( BT->Right); } void InorderTraversal( BinTree BT ) { if (BT == NULL) return; InorderTraversal( BT->Left ); printf(" %d", BT->Data); InorderTraversal( BT->Right); } BinTree Insert( BinTree BST, ElementType X ) { if (BST == NULL) { BST = (BinTree) malloc(sizeof(struct TNode)); BST->Data = X; BST->Left = NULL; BST->Right = NULL; } else if (X > BST->Data) BST->Right = Insert(BST->Right, X); else if (X < BST->Data) BST->Left = Insert(BST->Left, X); return BST; } Position Find( BinTree BST, ElementType X ) { if (BST == NULL) return NULL; else if (X == BST->Data) return BST; else if (X > BST->Data) return Find (BST->Right, X); else if (X < BST->Data) return Find (BST->Left, X); } Position FindMin( BinTree BST ) { if (BST == NULL) return NULL; while (BST->Left != NULL) BST = BST->Left; return BST; } Position FindMax( BinTree BST ) { if (BST == NULL) return NULL; while (BST->Right != NULL) BST = BST->Right; return BST; } BinTree Delete( BinTree BST, ElementType X ) { BinTree temp; if (BST == NULL) printf("Not Found\n"); else { if (X < BST->Data) BST->Left = Delete(BST->Left, X); else if (X > BST->Data) BST->Right = Delete(BST->Right, X); else { if (BST->Left && BST->Right) { temp = FindMin(BST->Right); BST->Data = temp->Data; BST->Right = Delete(BST->Right, temp->Data); } else { temp = BST; if (BST->Left == NULL) BST = BST->Right; else if (BST->Right == NULL) BST = BST->Left; free(temp); } } } return BST; }转载于:https://www.cnblogs.com/Dup4/p/9433146.html
相关资源:JAVA上百实例源码以及开源项目