Codeforces 1151F Sonya and Informatics

mac2022-06-30  48

题意: 有一个数列,只有\(0\)\(1\),每一次操作选择两个数交换位置,求\(k\)次操作之后这个数列为非递减数列的概率是多少

思路: 假设一共有\(m\)\(0\),和\(n - m\)\(1\)\(f[i][j]\)表示到第\(i\)个操作,前\(m\)个数字中有\(j\)\(1\)的方案数 有以下转移:

前m个数字随便取两个交换,或者后(n - m)个数字随便取两个交换,不会改变j\[ \begin{eqnarray*} f[i][j] += f[i - 1][j] * ({m \choose 2} + {n - m \choose 2}) \end{eqnarray*} \]前m个数字中的1和后(n - m)个数字中的1进行交换\[ \begin{eqnarray*} f[i][j] += f[i - 1][j] * j * (n - m - j) \end{eqnarray*} \]前m个数字中的0和后(n - m)个数字中的0进行交换\[ \begin{eqnarray*} f[i][j] += f[i - 1][j] * (m - j) * j \end{eqnarray*} \]前m个数字中取一个0和后(n - m)个数字中的1进行交换\[ \begin{eqnarray*} f[i][j] += f[i - 1][j - 1] * (m - j + 1) * (n - m - j + 1) \end{eqnarray*} \]前m个数字中取一个1和后(n - m)个数字中的0进行交换\[ \begin{eqnarray*} f[i][j] += f[i - 1][j + 1] * (j + 1) * (j + 1) \end{eqnarray*} \]

然后矩阵快速幂加速递推。

#include <bits/stdc++.h> using namespace std; #define ll long long #define N 110 const ll p = (ll)1e9 + 7; int n, m, k, a[N]; ll f[N][N], C[N][N]; ll qmod(ll base, ll n) { ll res = 1; while (n) { if (n & 1) { res = res * base % p; } base = base * base % p; n >>= 1; } return res; } struct node { int len; ll a[N][N]; node () {} node (int len) { this->len = len; memset(a, 0, sizeof a); } node operator * (const node &other) const { node res = node(len); for (int i = 0; i <= len; ++i) { for (int j = 0; j <= len; ++j) { for (int k = 0; k <= len; ++k) { (res.a[i][j] += a[i][k] * other.a[k][j] % p) %= p; } } } return res; } }base, res; void qmod(node &res, node &base, ll n) { while (n) { if (n & 1) { res = res * base; } base = base * base; n >>= 1; } } int main() { memset(C, 0, sizeof C); C[1][0] = C[1][1] = 1; for (int i = 1; i <= 100; ++i) { for (int j = 0; j <= i; ++j) { (C[i + 1][j + 1] += C[i][j]) %= p; (C[i + 1][j] += C[i][j]) %= p; } } while (scanf("%d%d", &n, &k) != EOF) { m = 0; for (int i = 1; i <= n; ++i) { scanf("%d", a + i); m += (a[i] == 0); } base = node(m); res = node(m); if (m == 0) { res.a[0][0] = 1; } for (int i = 1, j = 0; i <= m; ++i) { j += (a[i] == 1); if (i == m) { res.a[0][j] = 1; } } for (int i = 0; i <= m; ++i) { (base.a[i][i] += C[m][2] + C[n - m][2]) %= p; (base.a[i][i] += i * (n - m - i) % p) %= p; (base.a[i][i] += (m - i) * i % p) %= p; if (i != 0) { (base.a[i - 1][i] += (m - i + 1) * (n - m - i + 1) % p) %= p; } if (i != m) { (base.a[i + 1][i] += (i + 1) * (i + 1) % p) %= p; } } qmod(res, base, k); ll a = res.a[0][0], b = 0; for (int i = 0; i <= m; ++i) { (b += res.a[0][i]) %= p; } printf("%lld\n", a * qmod(b, p - 2) % p); /* memset(f, 0, sizeof f); for (int i = 1, j = 0; i <= m; ++i) { j += (a[i] == 1); if (i == m) { f[0][j] = 1; } } for (int i = 1; i <= k; ++i) { for (int j = 0; j <= m; ++j) { (f[i][j] += f[i - 1][j] * (C[m][2] + C[n - m][2]) % p) %= p; (f[i][j] += f[i - 1][j] * j % p * (n - m - j) % p) %= p; (f[i][j] += f[i - 1][j] * (m - j) % p * j % p) %= p; if (j != 0) { (f[i][j] += f[i - 1][j - 1] * (m - j + 1) % p * (n - m - j + 1) % p) %= p; } if (j != m) { (f[i][j] += f[i - 1][j + 1] * (j + 1) % p * (j + 1) % p) %= p; } } } ll a = 0, b = f[k][0]; for (int i = 0; i <= m; ++i) { (a += f[k][i]) %= p; } printf("%lld\n", b * qmod(a, p - 2) % p); */ } return 0; }

转载于:https://www.cnblogs.com/Dup4/p/10765303.html

最新回复(0)