Description
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。 给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
Input
输入的第一行包含一个正整数n(n< =100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
Output
输出用这些数构造Huffman树的总费用。
Sample Input
5
5 3 8 2 9
Sample Output
59
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
#include <map>
using namespace std;
const int INF =
0x3f3f3f3f;
const int maxn =
1e6;
#define ll long long
int t, sum, cost, buffer, miao, ying, ans;
int main()
{
priority_queue<
int, vector<
int>, greater<
int> >
q;
scanf("%d", &
t);
while(t--
)
{
scanf("%d", &
buffer);
q.push(buffer);
}
sum =
0;
while(q.size() !=
1)
{
miao =
q.top();
q.pop();
ying =
q.top();
q.pop();
ans = miao+
ying;
sum +=
ans;
q.push(ans);
}
printf("%d\n", sum);
return 0;
}
转载于:https://www.cnblogs.com/RootVount/p/10590053.html
相关资源:JAVA上百实例源码以及开源项目