[BZOJ2138]stone(Hall定理,线段树)

mac2022-06-30  22

Description

话说Nan在海边等人,预计还要等上M分钟。为了打发时间,他玩起了石子。Nan搬来了N堆石子,编号为1到N,每堆 包含Ai颗石子。每1分钟,Nan会在编号在\([L_i,R_i]\)之间的石堆中挑出任意Ki颗扔向大海(好疼的玩法),如果\([L_i,R_i]\)剩下石子不够\(K_i\)颗,则取尽量地多。为了保留扔石子的新鲜感,Nan保证任意两个区间\([L_i,R_i]\)\([L_j,R_j]\),不会存在\(L_i<=L_j\& R_j<=R_i\)的情况,即任意两段区间不存在包含关系。可是,如果选择不当,可能无法扔出最多的石子,这时Nan就会不高兴了。所以他希望制定一个计划,他告诉你他m分钟打算扔的区间\([L_i,R_i]\)以及\(K_i\)。现在他想你告诉他,在满足前i-1分钟都取到你回答的颗数的情况下,第i分钟最多能取多少个石子。\(n\le 40000\)

Solution

Hall定理:

设二分图中\(\text{G=< V1,V2,E >}\)\(\text{|V1|=m<=|V2|=n}\) ,\(\text{G}\)中存在从 \(\text{V1}\)\(\text{V2}\)的完全匹配当且仅当\(\text{V1}\)中任意\(\text{k(k=1,2,...,m)}\)个顶点至少与\(\text{V2}\)\(\text{k}\)个顶点是相邻的。

建立二分图匹配模型,左部节点为石头(每个点拆为A[i]个点),右部节点为需求(每个点拆为K[i]个点),从小到大依次加入右部节点,然后询问在之前需求点匹配数不变的情况下该点最多能匹配的点数。

不难发现最后是一部分完美匹配+一部分不完美匹配,根据hall定理,一些点具有完美匹配要求任取左部区间,该区间石头数大于等于包含在区间内的需求数。

那么设 \(a[i]\) 表示右端点 \(\le i\) 的区间需求量, \(b[i]\) 为左端点 \(\le i\) 的区间的需求量。

那么区间 \([l,r]\)

石子数 \(=s[r] - s[l - 1]\) 需求数 \(=a[r] - b[l - 1]\)

那么只要满足 \(\forall 0 \le i < j \le n\)

\[ (s[j] - s[i]) - (a[j] - b[i]) \geq 0 \]

\(f[i] = s[i] - a[i], g[i] = s[i] - b[i]\)

考虑区间 \([l,r]\) 满足 \(k\) 的需求量造成的影响。

\[ f[r...n] -= k\\ g[l...n] -= k \] 接下来分类讨论,列出不等式:

\[ i\in [0, l - 1], j\in [r + 1, n]\\ f[j] - k - g[i] \geq 0\\ k\le min(f[j]) - max(g[i])\\ k\le min(f[r+1...n]) - max(g[1...l-1]) \]

\(k\)\(min(f[r+1...n]) - max(g[0...l-1])\) 时最优。

用线段树维护即可。

Code

#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <fstream> typedef long long LL; typedef unsigned long long uLL; #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define MP(x, y) std::make_pair(x, y) #define DE(x) cerr << x << endl; #define debug(...) fprintf(stderr, __VA_ARGS__) #define GO cerr << "GO" << endl; #define rep(i, a, b) for (register int (i) = (a); (i) <= (b); ++(i)) using namespace std; inline void proc_status() { ifstream t("/proc/self/status"); cerr << string(istreambuf_iterator<char>(t), istreambuf_iterator<char>()) << endl; } inline int read() { register int x = 0; register int f = 1; register char c; while (!isdigit(c = getchar())) if (c == '-') f = -1; while (x = (x << 1) + (x << 3) + (c xor 48), isdigit(c = getchar())); return x * f; } template<class T> inline void write(T x) { static char stk[30]; static int top = 0; if (x < 0) { x = -x, putchar('-'); } while (stk[++top] = x % 10 xor 48, x /= 10, x); while (putchar(stk[top--]), top); } template<typename T> inline bool chkmin(T &a, T b) { return a > b ? a = b, 1 : 0; } template<typename T> inline bool chkmax(T &a, T b) { return a < b ? a = b, 1 : 0; } const int maxN = 4e4; int n, m; int s[maxN + 2], K[maxN + 2]; #define ls (x << 1) #define rs (x << 1 | 1) #define Rson rs, mid + 1, r #define Lson ls, l, mid int f[maxN << 2], g[maxN << 2], tagG[maxN << 2], tagF[maxN << 2]; void pushup(int x) { f[x] = min(f[ls], f[rs]); g[x] = max(g[ls], g[rs]); } void build(int x, int l, int r) { if (l == r) { f[x] = g[x] = s[l]; return; } int mid = l + r >> 1; build(Lson); build(Rson); pushup(x); } void pushG(int x, int k) { tagG[x] += k; g[x] += k; } void pushF(int x, int k) { tagF[x] += k; f[x] += k; } void pushdown(int x) { if (tagG[x] != 0) { pushG(ls, tagG[x]); pushG(rs, tagG[x]); tagG[x] = 0; } if (tagF[x] != 0) { pushF(ls, tagF[x]); pushF(rs, tagF[x]); tagF[x] = 0; } } void addF(int x, int l, int r, int L, int R, int k) { if (L <= l and r <= R) { return pushF(x, k); } int mid = l + r >> 1; pushdown(x); if (L <= mid) addF(Lson, L, R, k); if (R > mid) addF(Rson, L, R, k); pushup(x); } void addG(int x, int l, int r, int L, int R, int k) { if (L <= l and r <= R) { return pushG(x, k); } int mid = l + r >> 1; pushdown(x); if (L <= mid) addG(Lson, L, R, k); if (R > mid) addG(Rson, L, R, k); pushup(x); } int queryG(int x, int l, int r, int L, int R) { if (L <= l and r <= R) { return g[x]; } int mid = l + r >> 1; pushdown(x); int ans = -0x3f3f3f3f; if (L <= mid) chkmax(ans, queryG(Lson, L, R)); if (mid < R) chkmax(ans, queryG(Rson, L, R)); return ans; } int queryF(int x, int l, int r, int L, int R) { if (L <= l and r <= R) { return f[x]; } int mid = l + r >> 1; pushdown(x); int ans = 0x3f3f3f3f; if (L <= mid) chkmin(ans, queryF(Lson, L, R)); if (mid < R) chkmin(ans, queryF(Rson, L, R)); return ans; } int main() { #ifndef ONLINE_JUDGE freopen("stone.in", "r", stdin); freopen("stone.out", "w", stdout); #endif int x, y, z, P; scanf("%d", &n); scanf("%d%d%d%d", &x, &y, &z, &P); for (int i = 1; i <= n; ++i) s[i] = s[i - 1] + ((i - x) * (i - x) + (i - y) * (i - y) + (i - z) * (i - z)) % P; scanf("%d", &m); scanf("%d%d%d%d%d%d", &K[1], &K[2], &x, &y, &z, &P); for (int i = 3; i <= m; ++i) K[i] = (1ll * x * K[i - 1] + 1ll * y * K[i - 2] + z) % P; build(1, 0, n); for (int i = 1; i <= m; ++i) { int L, R, k; scanf("%d%d", &L, &R); printf("%d\n", k = min(queryF(1, 0, n, R, n) - queryG(1, 0, n, 0, L - 1), K[i])); addF(1, 0, n, R, n, -k); addG(1, 0, n, L, n, -k); } return 0; }

转载于:https://www.cnblogs.com/cnyali-Tea/p/11439760.html

相关资源:JAVA上百实例源码以及开源项目
最新回复(0)