FFT快速傅里叶变换-递归版-带注释模板

mac2022-06-30  20

题链:uoj#34多项式乘法 题意:给你两个多项式,请输出乘起来后的多项式。 //打法照抄hyc并复制了部分注释

真·存模板系列

#include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<iostream> #include<algorithm> using namespace std; #define N 301000 //!!! N>=2^18=262144>n+m>=200000 const double pi=acos(-1); struct node { double x,y; node(){x=y=0;} node(double x,double y):x(x),y(y){} }a[N],b[N]; node operator + (node x,node y) {return node(x.x+y.x,x.y+y.y);} node operator - (node x,node y) {return node(x.x-y.x,x.y-y.y);} node operator * (node x,node y) {return node(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);} void fft(node *s,int n,int t) //t就是标记它是不是逆的FFT //(最后不是要从点值表达转回系数表达吗t=-1表示处理这个 //用ωn^(-1)替换ωn 并将计算结果的每个元素除以n。 { if (n==1) return; node a0[n>>1],a1[n>>1]; for (int i=0;i<=n;i+=2) a0[i>>1]=s[i],a1[i>>1]=s[i+1]; fft(a0,n>>1,t);fft(a1,n>>1,t); node wn(cos(2*pi/n),t*sin(2*pi/n)),w(1,0);//就是ωn和ω //如果要算ωn^(-1)的话 根据负数的指数形式的定义e^(iu)=cos(u)+isin(u) //ωn^(-1)=e^(-2πi/n) 设u=2πi/n e^(-2πi/n)=cos(-u)+isin(-u)=cos(u)-isin(u) //所以如果反过来的话 让sin乘个t=-1就好了 for (int i=0;i<(n>>1);i++,w=w*wn) s[i]=a0[i]+w*a1[i],s[i+(n>>1)]=a0[i]-w*a1[i]; //w^2=(w+n/2)^2 均匀分布在圆上面 //w[i^2,n]=w[i/2,n/2] 折半引理 //s[i]=a0’(i^2)+i*a1’(i^2)=a0(i)+i*a1(i) //s[i+n/2]=a0’((i+n/2)^2)+i*a1’((i+n/2)^2)=a0’(i^2)-i*a1’(i^2) //因为i=-(i+n/2) 折半引理 } int main() { //freopen("a.in","r",stdin); //freopen("a.out","w",stdout); int n,m,fn,i; scanf("%d%d",&n,&m); for (i=0;i<=n;i++) scanf("%lf",&a[i].x); for (i=0;i<=m;i++) scanf("%lf",&b[i].x); fn=1;while (fn<=n+m) fn<<=1; fft(a,fn,1);fft(b,fn,1); for (i=0;i<=fn;i++) a[i]=a[i]*b[i]; fft(a,fn,-1); for (i=0;i<=n+m;i++) printf("%d ",(int)(a[i].x/fn+0.5)); //强转int会自动向下取整 所以要加0.5让它四舍五入 printf("\n"); return 0; }

转载于:https://www.cnblogs.com/Euryale-Rose/p/6527794.html

相关资源:FFT递归算法
最新回复(0)