PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。 它主要由Facebook的人工智能研究小组开发。Uber的"Pyro"也是使用的这个库。
PyTorch是一个Python包,提供两个高级功能:
具有强大的GPU加速的张量计算(如NumPy)包含自动求导系统的的深度神经网络PyTorch算是相当简洁优雅且高效快速的框架
设计追求最少的封装,尽量避免重复造轮子
算是所有的框架中面向对象设计的最优雅的一个,设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法
大佬支持,与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新
不错的的文档(相比FB的其他项目,PyTorch的文档简直算是完善了,参考Thrift),PyTorch作者亲自维护的论坛 供用户交流和求教问题
入门简单
基于Python的科学计算包,服务于以下两种场景:
作为NumPy的替代品,可以使用GPU的强大计算能力提供最大的灵活性和高速的深度学习研究平台Tensors(张量):是tensorflow中一个基础的概念--张量
Tensors与Numpy中的 ndarrays类似,但是在PyTorch中 Tensors 可以使用GPU进行计算.
from __future__ import print_function import torch这些方法将重用输入张量的属性,例如, dtype,除非设置新的值进行覆盖
x = x.new_ones(5, 3, dtype=torch.double) # new_* 方法来创建对象 print(x) x = torch.randn_like(x, dtype=torch.float) # 覆盖 dtype! print(x) # 对象的size 是相同的,只是值和类型发生了变化 tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=torch.float64) tensor([[ 0.5691, -2.0126, -0.4064], [-0.0863, 0.4692, -1.1209], [-1.1177, -0.5764, -0.5363], [-0.4390, 0.6688, 0.0889], [ 1.3334, -1.1600, 1.8457]])``torch.Size`` 返回值是 tuple类型, 所以它支持tuple类型的所有操作.
操作有多种语法。
我们将看一下加法运算。
In [10]:
print(torch.add(x, y)) tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])提供输出tensor作为参数
result = torch.empty(5, 3) torch.add(x, y, out=result) print(result) tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])替换
# adds x to y y.add_(x) print(y) tensor([[ 0.7808, -1.4388, 0.3151], [-0.0076, 1.0716, -0.8465], [-0.8175, 0.3625, -0.2005], [ 0.2435, 0.8512, 0.7142], [ 1.4737, -0.8545, 2.4833]])任何 以``_`` 结尾的操作都会用结果替换原变量. 例如: ``x.copy_(y)``, ``x.t_()``, 都会改变 ``x``.
你可以使用与NumPy索引方式相同的操作来进行对张量的操作
print(x[:, 1]) tensor([-2.0126, 0.4692, -0.5764, 0.6688, -1.1600])将一个Torch Tensor转换为NumPy数组是一件轻松的事,反之亦然。
Torch Tensor与NumPy数组共享底层内存地址,修改一个会导致另一个的变化。
将一个Torch Tensor转换为NumPy数组
a = torch.ones(5) print(a) tensor([1., 1., 1., 1., 1.]) b = a.numpy() print(b) [1. 1. 1. 1. 1.]观察numpy数组的值是如何改变的。
a.add_(1) print(a) print(b) tensor([2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2.]NumPy Array 转化成 Torch Tensor
使用from_numpy自动转化
import numpy as np a = np.ones(5) b = torch.from_numpy(a) np.add(a, 1, out=a) print(a) print(b) [2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64)所有的 Tensor 类型默认都是基于CPU, CharTensor 类型不支持到 NumPy 的转换.
使用.to 方法 可以将Tensor移动到任何设备中
# is_available 函数判断是否有cuda可以使用 # ``torch.device``将张量移动到指定的设备中 if torch.cuda.is_available(): device = torch.device("cuda") # a CUDA 设备对象 y = torch.ones_like(x, device=device) # 直接从GPU创建张量 x = x.to(device) # 或者直接使用``.to("cuda")``将张量移动到cuda中 z = x + y print(z) print(z.to("cpu", torch.double)) # ``.to`` 也会对变量的类型做更改 tensor([0.7632], device='cuda:0') tensor([0.7632], dtype=torch.float64)