Python设计模式中单例模式的实现及在Tornado中的应用

mac2022-06-30  20

单例模式的实现方式 将类实例绑定到类变量上 class Singleton(object): _instance = None

def new(cls, *args): if not isinstance(cls._instance, cls): cls._instance = super(Singleton, cls).__new__(cls, *args) return cls._instance

但是子类在继承后可以重写__new__以失去单例特性

class D(Singleton):

def new(cls, *args): return super(D, cls).__new__(cls, *args)

使用装饰器实现

def singleton(_cls): inst = {}

def getinstance(*args, **kwargs): if _cls not in inst: inst[_cls] = _cls(*args, **kwargs) return inst[_cls] return getinstance

@singleton class MyClass(object): pass

问题是这样装饰以后返回的不是类而是函数,当然你可以singleton里定义一个类来解决问题,但这样就显得很麻烦了

使用__metaclass__,这个方式最推荐

class Singleton(type): _inst = {}

def call(cls, *args, **kwargs): if cls not in cls._inst: cls._inst[cls] = super(Singleton, cls).__call__(*args) return cls._inst[cls]

class MyClass(object):metaclass = Singleton

Tornado中的单例模式运用 来看看tornado.IOLoop中的单例模式: class IOLoop(object):

@staticmethod def instance(): """Returns a global IOLoop instance.

Most applications have a single, global IOLoop running on the main thread. Use this method to get this instance from another thread. To get the current thread's IOLoop, use current(). """ if not hasattr(IOLoop, "_instance"): with IOLoop._instance_lock: if not hasattr(IOLoop, "_instance"): # New instance after double check IOLoop._instance = IOLoop() return IOLoop._instance

为什么这里要double check?来看个这里面简单的单例模式,先来看看代码:

class Singleton(object):

@staticmathod def instance(): if not hasattr(Singleton, '_instance'): Singleton._instance = Singleton() return Singleton._instance

在 Python 里,可以在真正的构造函数__new__里做文章:

class Singleton(object):

def new(cls, *args, **kwargs): if not hasattr(cls, '_instance'): cls._instance = super(Singleton, cls).new(cls, *args, **kwargs) return cls._instance

这种情况看似还不错,但是不能保证在多线程的环境下仍然好用,看图: 201632180733229.png (683×463)

出现了多线程之后,这明显就是行不通的。

1.上锁使线程同步 上锁后的代码:

import threading

class Singleton(object):

_instance_lock = threading.Lock()

@staticmethod def instance(): with Singleton._instance_lock: if not hasattr(Singleton, '_instance'): Singleton._instance = Singleton() return Singleton._instance

这里确实是解决了多线程的情况,但是我们只有实例化的时候需要上锁,其它时候Singleton._instance已经存在了,不需要锁了,但是这时候其它要获得Singleton实例的线程还是必须等待,锁的存在明显降低了效率,有性能损耗。

2.全局变量 在 Java/C++ 这些语言里还可以利用全局变量的方式解决上面那种加锁(同步)带来的问题:

class Singleton {

private static Singleton instance = new Singleton();

private Singleton() {}

public static Singleton getInstance() { return instance; }

}

在 Python 里就是这样了:

class Singleton(object):

@staticmethod def instance(): return _g_singleton

_g_singleton = Singleton()

def get_instance():

return _g_singleton

但是如果这个类所占的资源较多的话,还没有用这个实例就已经存在了,是非常不划算的,Python 代码也略显丑陋……

所以出现了像tornado.IOLoop.instance()那样的double check的单例模式了。在多线程的情况下,既没有同步(加锁)带来的性能下降,也没有全局变量直接实例化带来的资源浪费。

3.装饰器

如果使用装饰器,那么将会是这样: import functools

def singleton(cls): ''' Use class as singleton. '''

cls.__new_original__ = cls.__new__

@functools.wraps(cls.__new__) def singleton_new(cls, *args, **kw): it = cls.__dict__.get('it') if it is not None: return it

cls.__it__ = it = cls.__new_original__(cls, *args, **kw) it.__init_original__(*args, **kw) return it

cls.__new__ = singleton_new cls.__init_original__ = cls.__init__ cls.__init__ = object.__init__

return cls

Sample use:

@singleton class Foo: def new(cls): cls.x = 10 return object.__new__(cls)

def init(self): assert self.x == 10 self.x = 15

assert Foo().x == 15 Foo().x = 20 assert Foo().x == 20

def singleton(cls): instance = cls() instance.__call__ = lambda: instance return instance

Sample use

@singleton class Highlander: x = 100 # Of course you can have any attributes or methods you like.

Highlander() is Highlander() is Highlander #=> True id(Highlander()) == id(Highlander) #=> True Highlander().x == Highlander.x == 100 #=> True Highlander.x = 50 Highlander().x == Highlander.x == 50 #=> True

转载于:https://www.cnblogs.com/c-x-a/p/9483400.html

最新回复(0)