之前使用matplotlib绘制曲线图直接使用的是plot()方法,其实绘制基础的散点图很简单,只要使用scatter()方法就可以了,其他的设置方式与曲线图的设置方式也是一致的。 例如:
import matplotlib.pyplot as plt import numpy as np x1 = [1, 2, 3, 4] y1 = [1, 2, 3, 4] #第一组数据 x2 = [1, 2, 3, 4] y2 = [2, 3, 4, 5] #第二组数据 n = 10 x3 = np.random.randint(0, 5, n) y3 = np.random.randint(0, 5, n) #使用随机数产生 plt.scatter(x1, y1, marker = 'x',color = 'red', s = 40 ,label = 'First') # 记号形状 颜色 点的大小 设置标签 plt.scatter(x2, y2, marker = '+', color = 'blue', s = 40, label = 'Second') plt.scatter(x3, y3, marker = 'o', color = 'green', s = 40, label = 'Third') plt.legend(loc = 'best') # 设置 图例所在的位置 使用推荐位置 plt.show()效果:
坐标轴的设置:
import matplotlib.pyplot as plt import numpy as np x1 = [-1, 2, -3, 4] y1 = [-1, 2, -3, 4] x2 = [-1, 2, -3, 4] y2 = [-2, 3, -4, 5] n = 10 x3 = np.random.randint(-5, 5, n) y3 = np.random.randint(-5, 5, n) plt.scatter(x1, y1, marker = 'x',color = 'red', s = 40 ,label = 'First') plt.scatter(x2, y2, marker = '+', color = 'blue', s = 40, label = 'Second') plt.scatter(x3, y3, marker = 'o', color = 'green', s = 40, label = 'Third') plt.legend(loc = 'best') plt.xlabel('X axis') plt.ylabel('Y axis') # 设置坐标轴标签 ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') #设置 上、右 两条边框不显示 ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') #将下、左 两条边框分别设置为 x y 轴 ax.spines['bottom'].set_position(('data', 0)) # 将两条坐标轴的交点进行绑定 ax.spines['left'].set_position(('data', 0)) plt.show()效果: