Codeforces 1095C. Powers Of Two(二进制拆分)

mac2022-06-30  23

A positive integer xx is called a power of two if it can be represented as x=2yx=2y, where yy is a non-negative integer. So, the powers of two are 1,2,4,8,16,…1,2,4,8,16,….

You are given two positive integers nn and kk. Your task is to represent nn as the sumof exactly kk powers of two.

Input

The only line of the input contains two integers nn and kk (1≤n≤1091≤n≤109, 1≤k≤2⋅1051≤k≤2⋅105).

Output

If it is impossible to represent nn as the sum of kk powers of two, print NO.

Otherwise, print YES, and then print kk positive integers b1,b2,…,bkb1,b2,…,bk such that each of bibi is a power of two, and ∑i=1kbi=n∑i=1kbi=n. If there are multiple answers, you may print any of them.

Examples

Input

9 4

Output

YES 1 2 2 4

Input

8 1

Output

YES 8

Input

5 1

Output

NO

Input

3 7

Output

NO

 题意: 对于n,是否表示成k个2^i(i=0,1,2,3........)

eg: 9 =(1001)=2^3+2^0

       如果k=2,很明显满足

       如果k=3,9=2^2+2^2+2^0

       如果k=4,9=2^1+2^1+2^2+2^0

等等

就是把n转换成二进制码,每一位二进制码也可以拆分

代码:

import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int n=scan.nextInt(); int k=scan.nextInt(); int sum_1=0,num=0;//sum_1 二进制1的个数,num二进制的位数 int bit[]=new int[50];//存储每一位二进制,从低位到高位 //准备工作 while(n!=0){ bit[++num]=n&1;//根据二进制运算获得n得每一位二进制码 n/=2; if(bit[num]==1) sum_1++; } //二进制拆分 while(sum_1<k){ if(num==1)//num==1说明到最后一位 break; bit[num]-=1; bit[num-1]+=2; if(bit[num]==0) num-=1; sum_1++; } //判断输出 if(sum_1!=k){ System.out.println("NO"); } else{ //分开输出的目的就是控制输出格式 int c=1; System.out.println("YES"); for(int i=1;i<num;i++,c*=2){ for(int j=0;j<bit[i];j++){ System.out.print(c+" "); } } for(int i=1;i<bit[num];i++){ System.out.print(c+" "); } System.out.println(c); } } }

 

最新回复(0)