Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input 6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 -26 -38 -10 62 -32 -54 -6 45
Sample Output 5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题目大意:给定各有n个整数的四个数列A、B、C、D。要从每个数列中各取出1个数,使四个数的和为0。求出这样的组合的个数。当一个数列中有多个相同的数字时,把它们作为不同的数字看待。
!限制条件: 1≤n≤4000 |(数字的值)|≤2^28
从4个数列中选择的话总共有n4种情况,所以全部判断一遍不可行。不过将它们对半分为AB和CD再考虑,就可以快速解决了。从2个数列中选择的话只有n2种组合,所以可以进行枚举。先从A、B中取出a、b后,为了使总和为0则需要从C、D中取出c+d=-a-b。因此先将C、D中取数字的n2种方法全都枚举出来,先将这些和排好序,这样就可以与运用二分搜索了。这个算法的复杂度是O(n2logn)。
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; typedef long long LL; const int MAXN = 5000; int n, A[MAXN], B[MAXN], C[MAXN], D[MAXN], CD[MAXN * MAXN]; void solve() { for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) { CD[i * n + j] = C[i] + D[j]; } sort(CD, CD + n * n); LL res = 0; for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) { int cd = -(A[i] + B[j]); res += upper_bound(CD, CD + (n * n), cd) - lower_bound(CD, CD + (n * n), cd); } printf("%lld", res); } int main() { scanf("%d", &n); for(int i = 0; i < n; i++) scanf("%d%d%d%d", &A[i], &B[i], &C[i], &D[i]); solve(); return 0; }转载于:https://www.cnblogs.com/Loi-Vampire/p/6017064.html
