python计算PCA代码
from sklearn.decomposition import PCA pca = PCA() data = pd.read_csv("test.xls",sep="\t") mda = data.T.values pca = PCA() pc = pca.fit_transform(mda) pd.DataFrame(pc)R计算PCA代码
test<-data.frame( X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139, 140, 161, 158, 140, 137, 152, 149, 145, 160, 156, 151, 147, 157, 147, 157, 151, 144, 141, 139, 148), X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31, 29, 47, 49, 33, 31, 35, 47, 35, 47, 44, 42, 38, 39, 30, 48, 36, 36, 30, 32, 38), X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68, 64, 78, 78, 67, 66, 73, 82, 70, 74, 78, 73, 73, 68, 65, 80, 74, 68, 67, 68, 70), X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74, 74, 84, 83, 77, 73, 79, 79, 77, 87, 85, 82, 78, 80, 75, 88, 80, 76, 76, 73, 78) ) data=t(as.matrix(test)) #'princomp'只能在单位比变量多的情况下使用 data.pr<-princomp(data,cor=TRUE) #cor是逻辑变量 当cor=TRUE表示用样本的相关矩阵R做主成分分析 当cor=FALSE表示用样本的协方差阵S做主 das = summary(data.pr,loadings=TRUE) #当样品比比变量少时用fast.prcomp data.pca = fast.prcomp(data,retx=T,scale=F,center=T) a = summary(data.pca) pc = as.data.frame(a$x)转载于:https://www.cnblogs.com/raisok/p/11432985.html