语法:[最终结果(变量) for 变量 in 可迭代对象]
1 lst = [x for x in range(1, 15)] 2 print(lst) 3 4 5 # 获取1-100以内能被3整除的数 6 lst = [i for i in range(100) if i % 3 == 0] 7 8 # 获取1-100以内能被3整除的数的平方 9 lst = [i*i for i in range(100) if i % 3 == 0]利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。
创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。
In [19]: next(G) Out[19]: 0 In [20]: next(G) Out[20]: 2 In [21]: next(G) Out[21]: 4 In [22]: next(G) Out[22]: 6 In [23]: next(G) Out[23]: 8 In [24]: next(G) --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-24-380e167d6934> in <module>() ----> 1 next(G) StopIteration: In [25]: In [26]: G = ( x*2 for x in range(5)) In [27]: for x in G: ....: print(x) ....: 02468 In [28]:在使用生成器实现的方式中,我们将原本在迭代器__next__方法中实现的基本逻辑放到一个函数中来实现,但是将每次迭代返回数值的return换成了yield,此时新定义的函数便不再是函数,而是一个生成器了。简单来说:只要在def中有yield关键字的 就称为 生成器.
此时按照调用函数的方式( 案例中为F = fib(5) )使用生成器就不再是执行函数体了,而是会返回一个生成器对象( 案例中为F ),然后就可以按照使用迭代器的方式来使用生成器了。 In [38]: for n in fib(5): ....: print(n) ....: 11235 In [39]: 但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中: In [39]: g = fib(5) In [40]: while True: ....: try: ....: x = next(g) ....: print("value:%d"%x) ....: except StopIteration as e: ....: print("生成器返回值:%s" % e.value) ....: break ....: value:1 value:1 value:2 value:3 value:5 生成器返回值:done In [41]: 总结: 使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器) yield关键字有两点作用: 保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起 将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用 可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数) Python3中的生成器可以使用return返回最终运行的返回值,而Python2中的生成器不允许使用return返回一个返回值(即可以使用return从生成器中退出,但return后不能有任何表达式。
使用send(send不能第一次使用):
In [43]: f = gen() In [44]: next(f) Out[44]: 0 In [45]: f.send('haha') haha Out[45]: 1 In [46]: next(f) None Out[46]: 2 In [47]: f.send('haha') haha Out[47]: 3 In [48]:使用next()函数:
In [11]: f = gen() In [12]: next(f) Out[12]: 0 In [13]: next(f) None Out[13]: 1 In [14]: next(f) None Out[14]: 2 In [15]: next(f) None Out[15]: 3 In [16]: next(f) None Out[16]: 4 In [17]: next(f) None --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-17-468f0afdf1b9> in <module>() ----> 1 next(f) StopIteration:使用__next__():
In [18]: f = gen() In [19]: f.__next__() Out[19]: 0 In [20]: f.__next__() None Out[20]: 1 In [21]: f.__next__() None Out[21]: 2 In [22]: f.__next__() None Out[22]: 3 In [23]: f.__next__() None Out[23]: 4 In [24]: f.__next__() None --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-24-39ec527346a9> in <module>() ----> 1 f.__next__() StopIteration:案例:
1 def add(a, b): 2 return a + b 3 4 5 def test(): 6 for r_i in range(4): 7 yield r_i 8 9 10 g = test() 11 12 13 for n in [2, 10]: 14 g = (add(n, i) for i in g) 15 16 17 print(list(g)) # [20, 21, 22, 23] 惰性机制
转载于:https://www.cnblogs.com/fengyuhao/p/11541691.html
