pandas groupby

mac2022-06-30  76

pandas.DataFrame.groupbyDataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.    Parameters:        by : mapping function / list of functions, dict, Series, or tuple /        list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups    axis : int, default 0    level : int, level name, or sequence of such, default None        If the axis is a MultiIndex (hierarchical), group by a particular level or levels    as_index : boolean, default True        For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output    sort : boolean, default True        Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.    group_keys : boolean, default True        When calling apply, add group keys to index to identify pieces    squeeze : boolean, default False        reduce the dimensionality of the return type if possible, otherwise return a consistent type    Returns:            GroupBy object

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean() >>> data.groupby(['col1', 'col2'])['col3'].mean()

DataFrame with hierarchical index

>>> data.groupby(['col1', 'col2']).mean()

 

转载于:https://www.cnblogs.com/hhh5460/p/5596374.html

最新回复(0)